Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (12): 1925-1934.doi: 10.16183/j.cnki.jsjtu.2023.141
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHU Haoran1,2, CHEN Ziqiang1(), YANG Deqing1,2
Received:
2023-04-17
Revised:
2023-07-25
Accepted:
2023-09-18
Online:
2024-12-28
Published:
2025-01-06
CLC Number:
ZHU Haoran, CHEN Ziqiang, YANG Deqing. State of Health Estimation of Li-Ion Batteries Based on Differential Thermal Voltammetry and Gaussian Process Regression[J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1925-1934.
[1] | WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25. |
[2] | 崔显, 陈自强, 卢地华, 等. 基于KCC-PF的锂离子电池剩余使用寿命预测[J]. 装备环境工程, 2022, 19(4): 86-94. |
CUI Xian, CHEN Ziqiang, LU Dihua, et al. Remaining useful life prediction of lithium-ion battery based on Kendall rank correlation coefficient particle filter[J]. Equipment Environmental Engineering, 2022, 19(4): 86-94. | |
[3] | SANTHANAGOPALAN S, RAMADASS P, ZHANG J Z. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
[4] | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
[5] |
陈晓宇, 耿萌萌, 王乾坤, 等. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002.
doi: 10.19799/j.cnki.2095-4239.2022.0150 |
CHEN Xiaoyu, GENG Mengmeng, WANG Qiankun, et al. Electrochemical impedance feature selection and Gaussian process regression based on the state-of-health estimation method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002.
doi: 10.19799/j.cnki.2095-4239.2022.0150 |
|
[6] | WU M Y, QIN L L, WU G. State of power estimation of power lithium-ion battery based on an equivalent circuit model[J]. Journal of Energy Storage, 2022, 51: 104538. |
[7] | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. |
[8] | CHEN M Z, MA G J, LIU W B, et al. An overview of data-driven battery health estimation technology for battery management system[J]. Neurocomputing, 2023, 532: 152-169. |
[9] | ZHANG L S, WANG W T, YU H Q, et al. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model[J]. iScience, 2022, 25(12): 105638. |
[10] | MA B, YANG S C, ZHANG L S, et al. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep-learning model[J]. Journal of Power Sources, 2022, 548: 232030. |
[11] | GOH H H, LAN Z T, ZHANG D D, et al. Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of Energy Storage, 2022, 50: 104646. |
[12] | MAURES M, CAPITAINE A, DELÉTAGE J Y, et al. Lithium-ion battery SoH estimation based on incremental capacity peak tracking at several current levels for online application[J]. Microelectronics Reliability, 2020, 114: 113798. |
[13] |
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
doi: 10.16183/j.cnki.jsjtu.2021.027 |
LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. | |
[14] | ZHU X T, LIN Q B, YOU S, et al. A review of battery state of health estimation[C]// 2019 4th International Conference on Intelligent Green Building and Smart Grid. Hubei, China: IEEE, 2019: 456-460. |
[15] | 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法[J]. 物理学报, 2017, 66(23): 238801. |
PANG Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Physica Sinica, 2017, 66(23): 238801. | |
[16] | OBREGON J, HAN Y R, HO C W, et al. Convolutional autoencoder-based SOH estimation of lithium-ion batteries using electrochemical impedance spectroscopy[J]. Journal of Energy Storage, 2023, 60: 106680. |
[17] | DU X H, MENG J H, ZHANG Y M, et al. An information appraisal procedure: Endows reliable online parameter identification to lithium-ion battery model[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5889-5899. |
[18] | SIHVO J, ROINILA T, STROE D I. SOH analysis of Li-ion battery based on ECM parameters and broadband impedance measurements[C]// IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore: IEEE, 2020: 1923-1928. |
[19] | 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. | |
[20] | SUI X, HE S, GISMERO A, et al. Robust fuzzy entropy-based SOH estimation for different lithium-ion battery chemistries[C]// 2022 IEEE Energy Conversion Congress and Exposition. Detroit, USA: IEEE, 2022: 1-8. |
[21] | BIRKL C. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford: University of Oxford, 2017. |
[22] | BIRKL C. Oxford battery degradation database 1[DB/OL]. (2017-06-13)[2023-03-22]. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. |
[23] | WU B, YUFIT V, MERLA Y, et al. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries[J]. Journal of Power Sources, 2015, 273: 495-501. |
[24] | SCHAFER R W. What is a savitzky-golay filter?[A]. USA: IEEE Signal Processing Magazine, 2011: 111-117. |
[25] | WILLIAM C K I, RASMUSSEN C E. Gaussian processes for regression[C]// Proceedings of the 8th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT, 1995, 514-520. |
[1] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen. Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[2] | YANG Yinghe, WEI Handi, FAN Dixia, LI Ang. Optimization Method of Underwater Flapping Foil Propulsion Performance Based on Gaussian Process Regression and Deep Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 70-78. |
[3] | LI Chunxi, QIAO Hanzhe, YAO Gang, JIANG Haoyu, CUI Xiangke, GE Quanbo. SOH Estimation Method Based on RBF-BLS for Low-Carbon and Safe Travel of Electric Vehicle [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1454-1464. |
[4] | TANG Diyin, WANG Yufu, ZHENG Wenjian, HUANG Xucong, XING Yalan. A Review of Equivalent Model-Based State of Charge Estimation Algorithms of Lithium-Ion Battery [J]. Air & Space Defense, 2024, 7(6): 104-111. |
[5] | CUI Xian, CHEN Ziqiang. A Highly Robust State of Health Estimation Method for Lithium-Ion Batteries Based on ECM and SGPR [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 747-759. |
[6] | ZHANG Xiaoyuan, ZHANG Jinhao, YANG Lixin. Interval Estimation of State of Health for Lithium Batteries Considering Different Charging Strategies [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 273-284. |
[7] | QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen. SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 263-272. |
[8] | WU Jiang, ZHANG Yan, LIU Zelong, CHENG Gang, LEI Dong, JIAO Chaoyong. State of Charge Estimation of Lithium-Ion Battery Considering Operating Conditions and Aging Degree [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1935-1945. |
[9] | WANG Ziyao, GUO Fengxiang, CHEN Li. Engine Emission Prediction Based on Extrapolated Gaussian Process Regression Method [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 604-610. |
[10] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
[11] | LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. |
[12] | JIANG Yu, CHEN Ziqiang. Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. |
[13] | LIU Jian,CHEN Ziqiang,HUANG Deyang,ZHENG Changwen,ZHOU Shiyao,JIANG Yu. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Time Interval of Equal Charging Voltage Difference [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1058-1065. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 431
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||