Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (9): 1454-1464.doi: 10.16183/j.cnki.jsjtu.2023.051
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LI Chunxi1, QIAO Hanzhe2, YAO Gang1, JIANG Haoyu3(), CUI Xiangke4, GE Quanbo5
Received:
2023-02-15
Revised:
2023-02-15
Accepted:
2023-02-24
Online:
2024-09-28
Published:
2024-10-11
CLC Number:
LI Chunxi, QIAO Hanzhe, YAO Gang, JIANG Haoyu, CUI Xiangke, GE Quanbo. SOH Estimation Method Based on RBF-BLS for Low-Carbon and Safe Travel of Electric Vehicle[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1454-1464.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.051
[1] | XU Z Q. Research on energy conservation and emission reduction effect and development path of new energy electric vehicle[C]//2019 3rd International Conference on Data Science and Business Analytics. Istanbul, Turkey: IEEE, 2019: 448-450. |
[2] |
李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266.
doi: 10.16183/j.cnki.jsjtu.2021.464 |
LI Jiaqi, XU Xiaoyuan, YAN Zheng. A Review of coupled electricity and hydrogen energy system with transportation system under the background of large-scale new energy vehicles access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266. | |
[3] |
黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
doi: 10.16183/j.cnki.jsjtu.2021.272 |
HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. | |
[4] | 朱松琳. 新能源汽车进入发展新阶段[J]. 决策探索(上), 2021(1): 14-18. |
ZHU Songlin. New energy vehicles enter a new stage of development[J]. Policy Research & Exploration, 2021(1): 14-18. | |
[5] | 梁晓静. 锂离子电池健康状态的估计方法分析[J]. 化工管理, 2020(31): 67-68. |
LIANG Xiaojing. A review of lithium-ion battery state of health estimation methods[J]. Chemical Enterprise Management, 2020(31): 67-68. | |
[6] | 刘镕旗, 庞博聪, 李艳香. 新能源汽车及充电设施发展战略研究[J]. 中国市场, 2020(36): 54-55. |
LIU Rongqi, PANG Bocong, LI Yanxiang. Research on development strategy of new energy vehicles and charging facilities[J]. China Market, 2020(36): 54-55. | |
[7] | 阮艺亮. 我国新能源汽车起火事故分析与对策[J]. 汽车工业研究, 2019(3): 31-35. |
RUAN Yiliang. Analysis and countermeasures of fire accidents of new energy vehicles in China[J]. Auto Industry Research, 2019(3): 31-35. | |
[8] | WANG Q, TIAN H, YANG X F, et al. Research on new energy vehicle safety assessment based on AHP[C]//2019 4th International Conference on Mechanical, Control and Computer Engineering. Hohhot, China: IEEE, 2019: 1021-1024. |
[9] | WANG X, HUANG D G, WANG Y, et al. Battery management system based on AURIX multi-core architecture[C]//2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference. Detroit Michigan, USA: IEEE, 2019: 1790-1794. |
[10] | 陆凡, 刘东. 储能应用中的BMS系统设计[J]. 电工技术, 2020(22): 71-74. |
LU Fan, LIU Dong. Design of BMS system in energy storage application[J]. Electric Engineering, 2020(22): 71-74. | |
[11] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车非车载传导式充电机与电池管理系统之间的通信协议: GB/T 27930—2015[S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Communication protocols between off-board conductive charger and battery management system for electric vehicle: GB/T 27930—2015[S]. Beijing: Standards Press of China, 2016. | |
[12] | 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1-18. |
LIU Datong, SONG Yuchen, WU Wei, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1-18. | |
[13] | WU Y, JOSSEN A. Entropy-induced temperature variation as a new indicator for state of health estimation of lithium-ion cells[J]. Electrochimica Acta, 2018, 276: 370-376. |
[14] | LIU D T, WANG H, PENG Y, et al. Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction[J]. Energies, 2013, 6(8): 3654-3668. |
[15] | KHALEGHI S, FIROUZ Y, VAN MIERLO J, et al. Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators[J]. Applied Energy, 2019, 255: 113813. |
[16] | SUN Y Q, HAO X L, PECHT M, et al. Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator[J]. Microelectronics Reliability, 2018, 88/89/90: 1189-1194. |
[17] | LIU D T, SONG Y C, LI L, et al. On-line life cycle health assessment for lithium-ion battery in electric vehicles[J]. Journal of Cleaner Production, 2018, 199: 1050-1065. |
[18] | CHEN L, WANG H M, LIU B H, et al. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation[J]. Energy, 2021, 215: 119078. |
[19] |
徐宏东, 高海波, 徐晓滨, 等. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
doi: 10.16183/j.cnki.jsjtu.2021.345 |
XU Hongdong, GAO Haibo, XU Xiaobin, et al. State of health estimation of Lithium-ion battery using a CS-SVR model based on evidence reasoning rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. | |
[20] | YANG Q X, XU J, LI X Q, et al. State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105883. |
[21] | 曾文文. 锂离子电池健康状态评估及剩余寿命预测方法[D]. 安徽: 安徽理工大学, 2019. |
ZENG Wenwen. State-of-health estimation and remaining useful life prediction method of lithium-ion battery[D]. Anhui: Anhui University of Science and Technology, 2019. | |
[22] | 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018. |
XIONG Rui. Core algorithm for power battery management system[M]. Beijing: China Machine Press, 2018. | |
[23] | BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587. |
[24] | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
LIU Jian, CHEN Ziqiang, HUANG Deyang, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065. | |
[25] | LI C X, FU Y Y, ZHANG J M, et al. Evaluation methods on charging safety for EV power battery[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation. Zhanjiang, China: IEEE, 2020: 318-323. |
[26] |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939.
doi: 10.19799/j.cnki.2095-4239.2020.0166 |
LIANG Xincheng, ZHANG Mian, HUANG Guojun. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
doi: 10.19799/j.cnki.2095-4239.2020.0166 |
|
[27] | 何忠霖, 彭忆强, 丁宗恒. 纯电动汽车锂离子电池管理系统关键技术现状分析[J]. 汽车零部件, 2019(1): 71-76. |
HE Zhonglin, PENG Yiqiang, DING Zongheng. Analysis of key technology current status of Li-ion battery management system for pure electric vehicle[J]. Automobile Parts, 2019(1): 71-76. | |
[28] | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. |
[29] |
PHILIP CHEN C L, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24.
doi: 10.1109/TNNLS.2017.2716952 pmid: 28742048 |
[30] |
PHILIP CHEN C L, LIU Z L, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204.
doi: 10.1109/TNNLS.2018.2866622 pmid: 30207965 |
[31] | 周楠, 徐潇源, 严正, 等. 基于宽度学习系统的光伏发电功率超短期预测[J]. 电力系统自动化, 2021, 45(1): 55-64. |
ZHOU Nan, XU Xiaoyuan, YAN Zheng, et al. Ultra-short-term forecasting of photovoltaic power generation based on broad learning system[J]. Automation of Electric Power Systems, 2021, 45(1): 55-64. | |
[32] | 卫敏, 余乐安. 具有最优学习率的RBF神经网络及其应用[J]. 管理科学学报, 2012, 15(4): 50-57. |
WEI Min, YU Lean. A RBF neural network with optimum learning rates and its application[J]. Journal of Management Sciences in China, 2012, 15(4): 50-57. | |
[33] | 杨煜普, 马勇, 许晓鸣. 混合算法实现的RBF神经网络及在模式辨识中应用[J]. 上海交通大学学报, 2000, 34(12): 1664-1666. |
YANG Yupu, MA Yong, XU Xiaoming. Hybrid algorithm-based RBF neural network and its application on mode identification[J]. Journal of Shanghai Jiao Tong University, 2000, 34(12): 1664-1666. | |
[34] | 张远翔. 聚类分析中的最佳聚类数确定方法研究[D]. 合肥: 安徽大学, 2020. |
ZHANG Yuanxiang. Research on determining optimal number of clusters in cluster analysis[D]. Hefei: Anhui University, 2020. | |
[35] | 李元, 吴杰, 王国柱. k近邻补值方法在工业过程故障诊断中的应用[J]. 上海交通大学学报, 2015, 49(6): 830-836. |
LI Yuan, WU Jie, WANG Guozhu. k-nearest neighbor imputation method and its application in fault diagnosis of industrial process[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 830-836. | |
[36] | 孙瑶洁, 熊智, 李文龙, 等. 基于RBF神经网络的相对导航信息融合方法[J]. 航空计算技术, 2019, 49(6): 27-32. |
SUN Yaojie, XIONG Zhi, LI Wenlong, et al. Relative navigation information fusion method based on RBF neural network[J]. Aeronautical Computing Technique, 2019, 49(6): 27-32. |
[1] | CUI Xian, CHEN Ziqiang. A Highly Robust State of Health Estimation Method for Lithium-Ion Batteries Based on ECM and SGPR [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 747-759. |
[2] | ZHANG Xiaoyuan, ZHANG Jinhao, YANG Lixin. Interval Estimation of State of Health for Lithium Batteries Considering Different Charging Strategies [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 273-284. |
[3] | QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen. SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 263-272. |
[4] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||