Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (9): 1334-1343.doi: 10.16183/j.cnki.jsjtu.2023.048
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
WANG Yubo1, HAO Ling2,3(), XU Fei2,3, CHEN Wenbin1, ZHENG Libin1, CHEN Lei2,3, MIN Yong2,3
Received:
2023-02-13
Revised:
2023-05-06
Accepted:
2023-05-12
Online:
2024-09-28
Published:
2024-10-11
CLC Number:
WANG Yubo, HAO Ling, XU Fei, CHEN Wenbin, ZHENG Libin, CHEN Lei, MIN Yong. Pattern Recognition and Ultra-Short-Term Probabilistic Forecasting of Power Fluctuating in Aggregated Distributed Photovoltaics Clusters[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1334-1343.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.048
Tab.1
PI evaluation indicators at a confidence level of 90% at different time scales
时间尺度 | 模型 | eACE/% | δmean/MW | S/MW |
---|---|---|---|---|
15 min | 原始模型 | 2.91 | 125.60 | -31.29 |
15 min | 所提模型 | 5.18 | 103.47 | -12.04 |
1 h | 原始模型 | -2.42 | 147.33 | -48.49 |
1 h | 所提模型 | 1.35 | 120.94 | -29.26 |
2 h | 原始模型 | -6.37 | 174.61 | -74.86 |
2 h | 所提模型 | -2.38 | 139.78 | -56.25 |
4 h | 原始模型 | -12.41 | 191.38 | -162.94 |
4 h | 所提模型 | -7.96 | 154.72 | -128.18 |
Tab.2
PI evaluation indicators at different confidence levels of 4-hour time scale
置信度/% | 模型 | eACE/% | δmean/MW | S/MW |
---|---|---|---|---|
99 | 原始模型 | -5.46 | 367.37 | -41.11 |
99 | 所提模型 | -5.06 | 275.59 | -24.20 |
95 | 原始模型 | -8.28 | 241.42 | -112.88 |
95 | 所提模型 | -7.11 | 183.08 | -83.96 |
90 | 原始模型 | -12.41 | 191.38 | -162.94 |
90 | 所提模型 | -7.96 | 154.72 | -128.18 |
85 | 原始模型 | -16.50 | 124.22 | -192.93 |
85 | 所提模型 | -11.03 | 93.85 | -149.71 |
[1] | WANG F, ZHEN Z, LIU C, et al. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting[J]. Energy Conversion & Management, 2018, 157: 123-135. |
[2] | WANG F, ZHANG Z Y, LIU C, et al. Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting[J]. Energy Conversion & Management, 2019, 181: 443-462. |
[3] |
王洪坤, 葛磊蛟, 李宏伟, 等. 分布式光伏发电的特性分析与预测方法综述[J]. 电力建设, 2017, 38(7): 1-9.
doi: 10.3969/j.issn.1000-7229.2017.07.001 |
WANG Hongkun, GE Leijiao, LI Hongwei, et al. A review on characteristic analysis and prediction method of distributed PV[J]. Electric Power Construction, 2017, 38(7): 1-9.
doi: 10.3969/j.issn.1000-7229.2017.07.001 |
|
[4] | 王春平. 基于光伏功率预测的分布式能源系统优化[D]. 上海: 上海交通大学, 2020. |
WANG Chunping. Distributed energy system optimization based on photovoltaic power prediction[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
[5] |
廖启术, 胡维昊, 曹迪, 等. 新能源电力系统中的分布式光伏净负荷预测[J]. 上海交通大学学报, 2021, 55(12): 1520-1531.
doi: 10.16183/j.cnki.jsjtu.2021.244 |
LIAO Qishu, HU Weihao, CAO Di, et al. Distributed photovoltaic net load forecasting in new energy power systems[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1520-1531. | |
[6] | SAINT-DRENAN Y M, GOOD G H, BRAUN M, et al. Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method[J]. Solar Energy, 2016, 135: 536-550. |
[7] | KUSHWAHA V, PINDORIYA N M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast[J]. Renewable Energy, 2019, 140: 124-139. |
[8] | SHENG H M, XIAO J, CHENG Y H, et al. Short-term solar power forecasting based on weighted gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 300-308. |
[9] | 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11): 67-74. |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46(11): 67-74. | |
[10] | WANG K J, QI X X, LIU H D. Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225. |
[11] | ALMONACID F, RUS C, PÉREZ-HIGUERAS P, et al. Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks[J]. Energy, 2011, 36(1): 375-384. |
[12] | 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J]. Electric Power, 2022, 55(11): 149-154. | |
[13] | 郑若楠, 李国杰, 韩蓓, 等. 基于加权扩展日特征矩阵的分布式光伏发电日前功率预测[J]. 电力自动化设备, 2022, 42(2): 99-105. |
ZHENG Ruonan, LI Guojie, HAN Bei, et al. Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix[J]. Electric Power Automation Equipment, 2022, 42(2): 99-105. | |
[14] | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM Model[J]. High Voltage Engineering, 2022, 48(11): 4372-4388. | |
[15] | 许彪, 徐青山, 黄煜, 等. 基于藤copula分位数回归的光伏功率日前概率预测[J]. 电网技术, 2021, 45(11): 4426-4435. |
XU Biao, XU Qingshan, HUANG Yu, et al. Day-ahead probabilistic forecasting of photovoltaic power based on vine copula quantile regression[J]. Power System Technology, 2021, 45(11): 4426-4435. | |
[16] | 赵康宁, 蒲天骄, 王新迎, 等. 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43(12): 4377-4386. |
ZHAO Kangning, PU Tianjiao, WANG Xinying. et al. Probabilistic forecasting for photovoltaic power based on improved Bayesian neural network[J]. Power System Technology, 2019, 43(12): 4377-4386. | |
[17] | 王继东, 冉冉, 宋智林. 基于改进深度受限玻尔兹曼机算法的光伏发电短期功率概率预测[J]. 电力自动化设备, 2018, 38(5): 43-49. |
WANG Jidong, RAN Ran, SONG Zhilin. Probability forecast of short-term photovoltaic power generation based on improved depth restricted Boltzmann machine algorithm[J]. Electric Power Automation Equipment, 2018, 38(5): 43-49. | |
[18] | 程泽, 刘冲, 刘力. 基于相似时刻的光伏出力概率分布估计方法[J]. 电网技术, 2017, 41(2): 448-455. |
CHENG Ze, LIU Chong, LIU Li. A method of probabilistic distribution estimation of PV generation based on similar time of day[J]. Power System Technology, 2017, 41(2): 448-455. | |
[19] |
李芬, 周尔畅, 孙改平, 等. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
doi: 10.16183/j.cnki.jsjtu.2021.264 |
LI Fen, ZHOU Erchang, SUN Gaiping, et al. A novel weather classification method and its application in photovoltaic power prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. | |
[20] |
吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5): 146-155.
doi: 10.19912/j.0254-0096.tynxb.2020-0961 |
JI Xinge, LI Hui, YE Lin, et al. Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 146-155.
doi: 10.19912/j.0254-0096.tynxb.2020-0961 |
|
[21] |
何之倬, 张颖, 郑刚, 等. 基于极限学习机模型参数优化的光伏功率区间预测技术[J]. 上海交通大学学报, 2024, 58(3): 285-294.
doi: 10.16183/j.cnki.jsjtu.2022.338 |
HE Zhizhuo, ZHANG Ying, ZHENG Gang, et al. Interval prediction technology of photovoltaic power based on parameter optimization of extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 285-294. | |
[22] | WANG F, MI Z Q, SU S, et al. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters[J]. Energies, 2012, 5(5): 1355-1370. |
[23] | 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238. |
LÜ Weijie, FANG Yifan, CHENG Ze, et al. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 231-238. | |
[24] | 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567. |
CHEN Zhibao, DING Jie, ZHOU Hai, et al. A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567. | |
[25] | 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1523. |
JI Deyang, JIN Feng, DONG Lei, et al. Data repairing of photovoltaic power plant based on pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1523. | |
[26] | 王蔚卿. 基于波动过程模式识别的风速超短期预测模型[D]. 保定: 华北电力大学, 2020. |
WANG Weiqing. An ultra-short-term wind speed forecasting model based on fluctuation process pattern recognition[D]. Baoding: North China Electric Power University, 2020. |
[1] | LIU Jing, GUO Xiaolei, ZHANG Xinhai, MAO Jingjun, LYU Ruiheng. A Lightweight Aerial Rotated Object Detection Algorithm of Air-to-Surface Missile [J]. Air & Space Defense, 2024, 7(4): 106-113. |
[2] | ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[3] | CHEN Liyue1 (陈利跃), HONG Daojian2 (洪道鉴), HE Xing3* (何星), LU Dongqi2 (卢东祁), ZHANG Qian2 (张乾), XIE Nina2 (谢妮娜), XU Yizhou2 (徐一洲), YING Huanghao2 (应煌浩). Distributed Photovoltaic Real-Time Output Estimation Based on Graph Convolutional Networks [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 290-296. |
[4] | CHENG Xiangwei, ZHANG Daxu, DU Yonglong, GUO Hongbao, HONG Zhiliang. In-Situ X-Ray CT Characterization of Damage Mechanism of Plain Weave SiCf/SiC Composites Under Compression [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 232-241. |
[5] | LIN Zhaochen, ZHANG Xinran, LIU Ziyang, HE Fenghua, OUYANG Lei. Deep Learning-Based Hypersonic Vehicle Motion Behavior Recognition [J]. Air & Space Defense, 2024, 7(1): 48-55. |
[6] | LI Ze, QIAN Yong, ZANG Yiming, ZHOU Xiaoli, SHENG Gehao, JIANG Xiuchen. Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1176-1185. |
[7] | WANG Peng, LI Yanting, ZHANG Yu. Probabilistic Forecasting of Wind Power Generation Using Online LASSO VAR and EGARCH Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 845-858. |
[8] | ZENG Zhirian(曾志贤),CAO Jianjun*(曹建军),WENG Nianfeng(翁年凤),YUAN Zhen(袁震),YU Xu(余旭). Cross-Modal Entity Resolution for Image and Text Integrating Global and Fine-Grained Joint Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[9] | ZHANG Han, HAN Dong, LIU Tan, HUANG Yan. Analysis of Market Coupling Mechanism Between Distributed Photovoltaic Penetration and Electricity Market Under Background of Carbon Neutrality [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 464-472. |
[10] | QIN Chao1 (秦 超), WANG Yafei1 (王亚飞), ZHANG Yuchao2 (张宇超), YIN Chengliang1∗ (殷承良). Birds-Eye-View Semantic Segmentation and Voxels Semantic Segmentation Based on Frustum Voxels Modeling and Monocular Camera [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[11] | WANG Bing, PI Gang, CHEN Wencheng, XIE Haifeng, SHI Xiangling. Deep Learning Based Surface Defect Detection Method of Flexible Solar Array Hinge [J]. Air & Space Defense, 2023, 6(1): 96-101. |
[12] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[13] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[14] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[15] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||