[1] SAJJAD M, KHAN S, MUHAMMAD K, et al. Multigrade brain tumor classification using deep CNN with extensive data augmentation [J]. Journal of Computational Science, 2019, 30: 174-182.
[2] TANDEL G S, BALESTRIERI A, JUJARAY T, et al. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm [J]. Computers in Biology and Medicine, 2020, 122:103804.
[3] OTHMAN M F, BASRI M A M. Probabilistic neural network for brain tumor classification [C]//2011 Second International Conference on Intelligent Systems,Modelling and Simulation. Phnom Penh: IEEE, 2011: 136-138.
[4] CHENG J, HUANG W, CAO S, et al. Enhanced performance of brain tumor classification via tumor region augmentation and partition [J]. PLoS One, 2015, 10(10): e0140381.
[5] SACHDEVA J, KUMAR V, GUPTA I, et al. Segmentation, feature extraction, and multiclass brain tumor classification [J]. Journal of Digital Imaging, 2013, 26(6): 1141-1150.
[6] SRIDHAR D, MURALI KRISHNA I. Brain tumor classification using discrete cosine transform and probabilistic neural network [C]//2013 International Conference on Signal Processing, Image Processing &Pattern Recognition. Coimbatore: IEEE, 2013: 92-96.
[7] JONES T L, BYRNES T J, YANG G, et al. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique [J]. Neuro-oncology,2015, 17(3): 466-476.
[8] GAIKWAD S B, JOSHI M S. Brain tumor classification using principal component analysis and probabilistic neural network [J]. International Journal of Computer Applications, 2015, 120(3): 5-9.
[9] SWATI Z N K, ZHAO Q, KABIR M, et al. Brain tumor classification for MR images using transfer learning and fine-tuning [J]. Computerized Medical Imaging and Graphics, 2019, 75: 34-46.
[10] DAWOOD SALMAN AL-SHAIKHLI S, YANG M Y, ROSENHAHN B. Brain tumor classification using sparse coding and dictionary learning [C]//2014 IEEE International Conference on Image Processing. Paris:IEEE, 2015: 2774-2778.
[11] MADHUSUDHANAREDDY P, PRABHA I S. Novel approach in brain tumor classification using artificial neural networks [J]. International Journal of Engineering Research and Applications, 2013, 3(4): 2378-2381.
[12] DEEPAK S, AMEER P M. Brain tumor classification using deep CNN features via transfer learning [J]. Computers in Biology and Medicine, 2019, 111:103345.
[13] KANG J, ULLAH Z, GWAK J. MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers [J]. Sensors, 2021, 21(6):2222.
[14] SHARIF M I, KHAN M A, ALHUSSEIN M, et al. A decision support system for multimodal brain tumor classification using deep learning [J]. Complex & Intelligent Systems, 2022, 8(4): 3007-3020.
[15] MZOUGHI H, NJEH I, WALI A L, et al. Deep multiscale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification [J]. Journal of Digital Imaging, 2020, 33(4): 903-915.
[16] SACHDEVA J, KUMAR V, GUPTA I, et al. Multiclass brain tumor classification using GA-SVM [C]//2011 Developments in E-systems Engineering. Dubai: IEEE, 2012: 182-187.
[17] KHARRAT A, BEN HALIMA M, BEN AYED M. MRI brain tumor classification using Support Vector Machines and meta-heuristic method [C]//2015 15th International Conference on Intelligent Systems Design and Applications. Marrakech: IEEE, 2016: 446-451.
[18] VIJAY V, KAVITHA A R, REBECCA S R. Automated brain tumor segmentation and detection in MRI using enhanced Darwinian particle swarm optimization (EDPSO) [J]. Procedia Computer Science, 2016,92: 475-480.
[19] SUMITRA N, SAXENA R K. Brain tumor classification using back propagation neural network [J]. International Journal of Image, Graphics and Signal Processing, 2013, 5(2): 45-50.
[20] PIEREZAN J, DOS SANTOS COELHO L. Coyote optimization algorithm: A new metaheuristic for global optimization problems [C]//2018 IEEE Congress on Evolutionary Computation. Rio de Janeiro: IEEE,2018: 1-8.
[21] SARTAJ. Brain tumor classification (MRI): Classify MRI images into four classes [DB/OL]. [2022-08-11]. https://www.kaggle.com/datasets/sartajbhuvaji/braintumor-classification-mri.
[22] XIE X Z. A K-nearest neighbor technique for brain tumor segmentation using minkowski distance [J]. Journal of Medical Imaging and Health Informatics, 2018,8(2): 180-185.
[23] SAPRA P, SINGH R, KHURANA S. Brain tumor detection using neural network [J]. International Journal of Science and Modern Engineering, 2013, 1(9): 83-88.
[24] HAVAEI M, DUTIL F, PAL C, et al. A convolutional neural network approach to brain tumor segmentation [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2016:195-208.
[25] HUSSAIN S, ANWAR S M, MAJID M. Brain tumor segmentation using cascaded deep convolutional neural network [C]//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Jeju: IEEE, 2017: 1998-2001.
|