Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (7): 845-858.doi: 10.16183/j.cnki.jsjtu.2021.377
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
WANG Peng, LI Yanting(), ZHANG Yu
Received:
2021-09-26
Revised:
2021-12-20
Accepted:
2021-12-31
Online:
2023-07-28
Published:
2023-07-28
Contact:
LI Yanting
E-mail:ytli@sjtu.edu.cn
CLC Number:
WANG Peng, LI Yanting, ZHANG Yu. Probabilistic Forecasting of Wind Power Generation Using Online LASSO VAR and EGARCH Model[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 845-858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.377
Tab.1
Forecasting results in online dimension
模型 | RMSE | MAE | SMAPE |
---|---|---|---|
在线LASSO VAR(4) | 397.08 | 272.03 | 55.65 |
在线LASSO VAR(3) | 397.24 | 272.27 | 53.00 |
在线LASSO VAR(2) | 406.98 | 280.50 | 54.16 |
在线LASSO VAR(1) | 406.80 | 280.10 | 54.04 |
Batch LASSO VAR(4) | 399.05 | 273.76 | 53.07 |
Batch LASSO VAR(3) | 399.31 | 274.03 | 53.11 |
Batch LASSO VAR(2) | 399.64 | 274.17 | 53.16 |
Batch LASSO VAR(1) | 408.54 | 279.34 | 53.99 |
在线AR(4) | 420.52 | 287.19 | 55.05 |
[1] | Global Wind Energy Council. Global wind report 2022[R/OL]. (2022-12-31)[2023-02-16]. https://gwec.net/global-wind-report-2022/. |
[2] |
LANDBERG L, WATSON S J. Short-term prediction of local wind conditions[J]. Boundary-Layer Meteorology, 1994, 70(1): 171-195.
doi: 10.1007/BF00712528 URL |
[3] | FOCKEN U, LANGE M, WALDL H. Previento-A wind power prediction system with an innovative upscaling algorithm[C/OL]. (2001-01-01)[2021-07-30]. https://www.researchgate.net/publication/250448566_Previento_-_A_Wind_Power_Prediction_System_with_an_Innovative_Upscaling_Algorithm. |
[4] | 方江晓, 周晖, 黄梅, 等. 基于统计聚类分析的短期风电功率预测[J]. 电力系统保护与控制, 2011, 39(11): 67-73. |
FANG Jiangxiao, ZHOU Hui, HUANG Mei, et al. Short-term wind power prediction based on statistical clustering analysis[J]. Power System Protection & Control, 2011, 39(11): 67-73. | |
[5] |
AASIM, SINGH S N, MOHAPATRA A, Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting[J]. Renewable Energy, 2019, 136: 758-768.
doi: 10.1016/j.renene.2019.01.031 URL |
[6] |
YANG D Z. On post-processing day-ahead NWP forecasts using Kalman filtering[J]. Solar Energy, 2019, 182: 179-181.
doi: 10.1016/j.solener.2019.02.044 |
[7] | 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780. |
QI Chuangchuang, WANG Xiangwen. Short-term prediction of offshore wind power considering wind direction and atmospheric stability[J]. Power System Technology, 2021, 45(7): 2773-2780. | |
[8] | 李永刚, 王月, 刘丰瑞, 等. 基于Stacking融合的短期风速预测组合模型[J]. 电网技术, 2020, 44(8): 2875-2882. |
LI Yonggang, WANG Yue, LIU Fengrui, et al. Combination model of short-term wind speed prediction based on stacking fusion[J]. Power System Technology, 2020, 44(8): 2875-2882. | |
[9] |
WANG Y, HU Q H, MENG D Y, et al. Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-Kernel regression model[J]. Applied Energy, 2017, 208: 1097-1112.
doi: 10.1016/j.apenergy.2017.09.043 URL |
[10] | 李洪涛, 马志勇, 芮晓明. 基于数值天气预报的风能预测系统[J]. 中国电力, 2012, 45(2): 64-68. |
LI Hongtao, MA Zhiyong, RUI Xiaoming. Forecasting system based on numerical weather prediction[J]. Electric Power, 2012, 45(2): 64-68. | |
[11] |
OKUMUS I, DINLER A. Current status of wind energy forecasting and a hybrid method for hourly predictions[J]. Energy Conversion and Management, 2016, 123: 362-371.
doi: 10.1016/j.enconman.2016.06.053 URL |
[12] | 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060. |
QIAN Zheng, PEI Yan, Cao Lixiao, et al. Review of wind power forecasting method[J]. High Voltage Engineering, 2016, 42(4): 1047-1060. | |
[13] | DOWELL J, PINSON P. Very-short-term probabilistic wind power forecasts by sparse vector autoregression[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 763-770. |
[14] |
MESSNER J, PINSON P. Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting[J]. International Journal of Forecasting, 2019, 35(4): 1485-1498.
doi: 10.1016/j.ijforecast.2018.02.001 URL |
[15] |
LANGE M. On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors[J]. Journal of Solar Energy Engineering, 2005, 127(2): 177-184.
doi: 10.1115/1.1862266 URL |
[16] | 刘兴杰, 谢春雨. 基于贝塔分布的风电功率波动区间估计[J]. 电力自动化设备, 2014, 34(12): 26-30. |
LIU Xingjie, XIE Chunyu. Wind power fluctuation interval estimation based on beta distribution[J]. Electric Power Automation Equipment, 2014, 34(12): 26-30. | |
[17] | 李海燕. 基于数据挖掘与非线性分位数回归的风电功率概率密度预测方法[D]. 合肥: 合肥工业大学, 2018. |
LI Haiyan. Wind power probability density forecasting method based on data mining and non-linear quantile regression[D]. Hefei: Hefei University of Technology, 2018. | |
[18] | ZHANG Y, LIU K, QIN L, et al. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods[J]. Energy Conversion & Management, 2016, 112: 208-219. |
[19] | QIN X, CAO L, RUNDENSTEINER E A, et al. Scalable kernel density estimation-based local outlier detection over large data streams[J]. Advances in Database Technology-EDBT, 2019, 3: 421-432. |
[20] |
SLOUGHTER J M, GNEITING T, RAFTERY A E. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging[J]. Journal of the American Statistical Association, 2010, 105(489): 25-35.
doi: 10.1198/jasa.2009.ap08615 URL |
[21] |
WANG G, JIA R, LIU J, et al. A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning[J]. Renewable Energy, 2020, 145: 2426-2434.
doi: 10.1016/j.renene.2019.07.166 URL |
[22] | 刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268-275. |
LIU Shuai, ZHU Yongli, ZHANG Ke, et al. Short-term wind power forecasting based on error correction arma-garch model[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 268-275. | |
[23] | 李力行, 苗世洪, 涂青宇, 等. 考虑异方差效应的风电不确定性建模及其在调度中的应用[J]. 电力系统自动化, 2020, 44(8): 36-47. |
LI Lixing, MIAO Shihong, TU Qingyu, et al. Modelling of wind power uncertainty considering heteroskedasticity effect and its application in power system dispatching[J]. Automation of Electric Power Systems, 2020, 44(8): 36-47. | |
[24] | POGGI P, MUSELLI M, NOTTON G, et al. Forecasting and simulating wind speed in Corsica by using an autoregressive model[J]. Energy Conversion & Management, 2003, 44(20): 3177-3196. |
[25] | 孙春顺, 王耀南, 李欣然. 小时风速的向量自回归模型及应用[J]. 中国电机工程学报, 2008, 28(14): 112-117. |
SUN Chunshun, WANG Yaonan, LI Xinran. A vector autoregression model of hourly wind speed and its applications in hourly wind speed forecasting[J]. Proceedings of the CSEE, 2008, 28(14): 112-117. | |
[26] |
CAVALCANTE L, BESSA R J, REIS M, et al. LASSO vector autoregression structures for very short-term wind power forecasting[J]. Wind Energy, 2017, 20(4): 657-675.
doi: 10.1002/we.v20.4 URL |
[27] | FRIEDMAN J, HASTIE T, HÖFLING H, et al. Pathwise coordinate optimization[J]. The Annals of Applied Statistics, 2007, 1(2): 302-332. |
[28] |
MESSNER J W, PINSON P. Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting[J]. International Journal of Forecasting, 2019, 35(4): 1485-1498.
doi: 10.1016/j.ijforecast.2018.02.001 URL |
[29] | 朱金蝶. 回归模型中异方差检验方法研究[D]. 太原: 山西大学, 2019. |
ZHU Jindie. Study on the methods of testing heteroscedasticity in regression model[D]. Taiyuan: Shanxi University, 2019. | |
[30] |
ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987.
doi: 10.2307/1912773 URL |
[31] |
BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
doi: 10.1016/0304-4076(86)90063-1 URL |
[32] | BLACK F. Studies of stock market volatility changes[J]. Proceedings of the American Statistical Association Business & Economic Statistics Section, 1976, 177-181. |
[33] |
NELSON D B. Conditional heteroskedasticity in asset returns: A new approach[J]. Econometrica, 1991, 59(2): 347-370.
doi: 10.2307/2938260 URL |
[34] |
HAFNER C M, LINTON O. An almost closed form estimator for the egarch model[J]. Econometric Theory, 2017, 33(4): 1013-1038.
doi: 10.1017/S0266466616000256 URL |
[35] | BERNDT E K, HALL B H, et al. Annals of economic and social measurement[M]. USA: NBER, 1974: 653-665. |
[36] |
WANG Z, WANG W S, LIU C, et al. Probabilistic forecast for multiple wind farms based on regular vine copulas[J]. IEEE Transactions on Power Systems, 2018, 33(1): 578-589.
doi: 10.1109/TPWRS.2017.2690297 URL |
[37] |
GRIMIT E P, GNEITING T, BERROCAL V J, et al. The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(621C): 2925-2942.
doi: 10.1256/qj.05.235 URL |
[38] | CHEN H, GAO S. A study on the structure of asymmetric volatility in load series[C]// 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Nanjing, China: IEEE, 2008: 737-744. |
[39] | 张晓英, 张晓敏, 廖顺, 等. 基于聚类与非参数核密度估计的风电功率预测误差分析[J]. 太阳能学报, 2019, 40(12): 3594-3604. |
ZHANG Xiaoying, ZHANG Xiaomin, LIAO Shun, et al. Prediction error analysis of wind power based on clustering and non-parametric kernel density estimation[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3594-3604. | |
[40] | MEINSHAUSEN N, RIDGEWAY G. Quantile regression forests[J]. Journal of Machine Learning Research, 2006, 7(6): 983-999. |
[1] | LIU Chuanbin, JIAO Wenshu, WU Qiuwei, CHEN Jian, ZHOU Qian. Strategy of Wind-Storage Combined System Participating in Power System Secondary Frequency Regulation Based on Model Predictive Control [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 91-101. |
[2] | LIU Xinyu, WANG Sen, ZENG Long, YUAN Shaoheng, HAO Zhenghang, LU Xinyan. An Adaptive Additional Control Strategy for Suppressing Low-Frequency Grid Oscillations in Doubly-Fed Wind Farms [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1156-1164. |
[3] | GU Huijie, PENG Chaoyi, SUN Shuhao, LIU Mingtao, XIE Jun, SHI Xionghua, BAO Yong. A Short-Term Production Simulation Model of Wind-PV-Hydrogen-Pumped Storage Zero Carbon Power System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 505-512. |
[4] | PAN Xianxian, CHEN Tingwei, XU Zhiheng, WANG Tianlun, ZHANG Junxiao. A Multi-Scenario Integrated Flexible Planning Method for Microgrid [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1598-1607. |
[5] | SHEN Yangwu, SONG Xingrong, LUO Ziren, SHEN Feifan, HUANG Sheng. Inertial Control Strategy for Wind Farm with Distributed Energy Storage System Based on Model Predictive Control [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293. |
[6] | LI Linyan, HAN Shuang, QIAO Yanhui, LI Li, LIU Yongqian, YAN Jie, LIU Haidong. A Wind-Solar-Electric Vehicles Coordination Scheduling Method for High Proportion New Energy Grid-Connected Scenarios [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 554-563. |
[7] | YU Hao, ZHANG Zhemeng, PENG Sui, ZHANG Zhiqiang, REN Wanxin, LI Canbing. Comparative Analysis of Technical Standards for Offshore Wind Power via VSC-HVDC [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. |
[8] | LIU Xinyu, LU Xinyan, ZENG Long, HAO Zhenghang, ZHAO Qifang, LI Xianwei, HAO Tongmeng. Control Strategies for Suppressing Frequency Oscillation of Doubly-Fed Wind Farms Connected to Grid [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 303-311. |
[9] | LIU Mingtao, XIE Jun, ZHANG Qiuyan, BAO Changyu, CHANG Yifan, DUAN Jianan, SHI Xionghua, BAO Yong. Short-Term Production Simulation of Power System Containing Wind Power Under Carbon Trading Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. |
[10] | YANG Jie, HE Yanping, MENG Long, ZHAO Yongsheng, WU Haoyu. Coupled Dynamic Response on a 6 MW Spar-Type Floating Offshore Wind Turbine Under Extreme Conditions [J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 21-31. |
[11] | ZHANG Luhua,GUO Jiahu,CAI Xu,CAO Yunfeng,CHENG Mengzeng. Fault Currents of the Doubly Fed Induction Generator with Constant AC Excitation [J]. Journal of Shanghai Jiaotong University, 2010, 44(07): 1000-1004. |
[12] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[13] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[14] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[15] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||