Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (8): 963-971.doi: 10.16183/j.cnki.jsjtu.2022.089
Special Issue: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
Received:
2022-03-31
Revised:
2022-05-27
Accepted:
2022-07-27
Online:
2023-08-28
Published:
2023-08-31
CLC Number:
ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.089
Tab.2
Single step prediction error
模型 | 垂荡 | 横摇 | 纵摇 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
eMSE/ m2 | eRMSE/ m | eMAE/ m | r | eMSE/ (°)2 | eRMSE/ (°) | eMAE/ (°) | r | eMSE/ (°)2 | eRMSE/ (°) | eMAE/ (°) | r | |
CNN-LSTM | 0.067 2 | 0.259 3 | 0.215 1 | 0.963 8 | 0.038 2 | 0.195 3 | 0.166 5 | 0.953 4 | 0.190 8 | 0.436 8 | 0.355 5 | 0.975 1 |
LSTM | 0.151 1 | 0.388 7 | 0.318 3 | 0.831 8 | 0.078 2 | 0.269 9 | 0.214 3 | 0.873 1 | 0.362 5 | 0.602 1 | 0.487 0 | 0.937 2 |
GRU | 0.155 8 | 0.394 7 | 0.323 7 | 0.829 9 | 0.072 2 | 0.208 8 | 0.212 0 | 0.874 1 | 0.361 7 | 0.601 4 | 0.488 0 | 0.937 3 |
[1] | 喻元根, 马雪泉, 季盛. 基于AR的船舶运动极短期预报摇摆平台试验[J]. 上海船舶运输科学研究所学报, 2016, 39(4): 4-7. |
YU Yuangen, MA Xuequan, JI Sheng. Short time prediction of ship motion based on AR model and stewart platform experiment[J]. Journal of Shanghai Ship and Shipping Research Institute, 2016, 39(4): 4-7. | |
[2] | 范海平. 基于卡尔曼滤波技术的船舶横摇预测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. |
FAN Haiping. Study on the prediction and estimation of ship roll motion based on Kalman filter[D]. Harbin: Harbin Engineering University, 2008. | |
[3] | ZHOU B, SHI A. Empirical mode decomposition based LSSVM for ship motion prediction[C]//International Symposium on Neural Networks. Berlin, Heidelberg, Germany: Springer, 2013. |
[4] | PENA F L, GONZALEZ M M, CASAS V D, et al. An ANN based system for forecasting ship roll motion[C]//Computational Intelligence and Virtual Environments for Measurement Systems and Applications. Milan, Italy: IEEE Instrumentation & Measurement Magazine, 2013. |
[5] |
HOCHREITER S, SCHMIDHUBER R A, et al. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[6] |
WANG Y, WANG H, ZHOU B, et al. Multi-dimensional prediction method based on Bi-LSTMC for ship roll[J]. Ocean Engineering, 2021, 242: 110106.
doi: 10.1016/j.oceaneng.2021.110106 URL |
[7] |
WANG Y, WANG H, ZOU D, et al. Ship roll prediction algorithm based on Bi-LSTM-TPA combined model[J]. Journal of Marine Science and Engineering, 2021, 9(4): 387-1-16.
doi: 10.3390/jmse9040387 URL |
[8] |
ZHANG T, ZHENG X Q, LIU M X. Multiscale attention-based LSTM for ship motion prediction[J]. Ocean Engineering, 2021, 230(13): 109066.
doi: 10.1016/j.oceaneng.2021.109066 URL |
[9] | 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413-1421. |
ZHANG Biao, PENG Xiuyan, GAO Jie. Ship motion attitude prediction based on ELM-EMD-LSTM integrated model[J]. Journal of Ship Mechanics, 2020, 24(11): 1413-1421. | |
[10] | STOICA P, MOSES R. Spectral analysis of signals[M]. New Jersey, USA: Prentice Hall, 2005. |
[11] | KETKAR N, MOOLAYIL J. Deep Learning with Python[M]. Berkeley, USA: Apress, 2021: 197-242. |
[12] | 赵建利, 白格平, 李英俊, 等. 基于CNN-LSTM的短期风电功率预测[J]. 自动化仪表, 2020, 41(5): 37-41. |
ZHAO Jianli, BAI Geping, LI Yingjun, et al. Short-term wind power prediction based on CNN-LSTM[J]. Process Automation Instrumentation, 2020, 41(5): 37-41. | |
[13] | 王国栋. 基于LSTM的舰船运动姿态短期预测及仿真研究[D]. 镇江: 江苏科技大学, 2017. |
WANG Guodong. Short-term prediction and simulation of ship's motion based on LSTM[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017. | |
[14] | 刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190. |
LIU Xiuli, XU Xiaoli. Fault diagnosis method based on feature pyramid CRNN network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. | |
[15] |
TRISTAN P, FOSSEN T I. A MATLAB toolbox for parametric identification of radiation-force models of ships and offshore structures[J]. Modeling, Identification and Control, 2009, 30(1): 1-15.
doi: 10.4173/mic.2009.1.1 URL |
[16] | 朱仁传, 缪国平. 船舶在波浪上的运动理论[M]. 上海: 上海交通大学出版社, 2019: 185-186. |
ZHU Renchuan, MIAO Guoping. The theory of ship motion in waves[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 185-186. | |
[17] |
MWL A, DYX A, JING G A, et al. A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA[J]. Applied Soft Computing, 2022, 114: 108084.
doi: 10.1016/j.asoc.2021.108084 URL |
[1] | WEI Hui, CHEN Peng, ZHANG Ruihan, CHENG Zhengshun. Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 37-45. |
[2] | SHANG Fancheng, LI Chuanqing, ZHAN Ke, ZHU Renchuan. Application of Improved LSTM Neural Network in Time-Series Prediction of Extreme Short-Term Wave [J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 659-665. |
[3] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[4] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[5] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[6] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[7] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[8] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[9] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[10] | CHEN Chen,WU Qing,GAO Song. Short-Term Shipping Freight Volume Prediction Based on Temporal-Spatial Features [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 556-562. |
[11] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[12] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-. |
[13] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||