Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (7): 840-849.doi: 10.16183/j.cnki.jsjtu.2021.191
• Electronic Information and Electrical Engineering • Previous Articles Next Articles
WU Shuchen1, QI Zongfeng2, LI Jianxun1()
Received:
2021-07-22
Online:
2022-07-28
Published:
2022-08-16
Contact:
LI Jianxun
E-mail:lijx@sjtu.edu.cn.
CLC Number:
WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.191
Tab.2
Comparison of robustness between SInception-CNN and Sobol’ methods
参数 | SInception-CNN | 参数 | Sobol’法 | |||
---|---|---|---|---|---|---|
正常 | 加入脏样本 | 正常 | 加入脏样本 | |||
房屋总面积 | 61.52(1) | 64.07(1) | 房屋总面积 | 64.25(1) | 93.64(1) | |
地上居住面积 | 5.22(2) | 5.49(2) | 房屋一层面积 | 10.52(2) | 0.13(8) | |
杂项物品总价值 | 5.05(3) | 4.37(3) | 地下室已装修面积 | 9.51(3) | 0.55(5) | |
地下室已装修面积 | 4.47(4) | 3.96(4) | 杂项物品总价值 | 3.96(4) | 1.15(3) | |
地下室未装修面积 | 4.36(5) | 3.88(5) | 车库面积 | 3.05(5) | 0.12(9) |
[1] |
SALTELLI A, ALEKSANKINA K, BECKER W, et al. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[J]. Environmental Modelling and Software, 2019, 114: 29-39.
doi: 10.1016/j.envsoft.2019.01.012 URL |
[2] |
ZHANG X Y, TRAME M, LESKO L, et al. Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models[J]. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4(2): 69-79.
doi: 10.1002/psp4.6 URL |
[3] | 周云峰, 周永潮, 郑春华, 等. 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报(工学版), 2019, 53(2): 347-354. |
ZHOU Yunfeng, ZHOU Yongchao, ZHENG Chunhua, et al. Sensitivity analysis of parameters of storm water management model with Sobol method[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 347-354. | |
[4] | 王丰华, 王劭菁, 苏磊, 等. 采用Sobol’算法分析变电站接地网关键参数的灵敏度[J]. 高电压技术, 2017, 43(1): 300-306. |
WANG Fenghua, WANG Shaojing, SU Lei, et al. Sensitivity analysis of substation grounding grid parameters based on Sobol’ method[J]. High Voltage Engineering, 2017, 43(1): 300-306. | |
[5] | 何琨, 严正, 徐潇源, 等. 基于Sobol’法的孤岛微电网潮流全局灵敏度分析[J]. 电力系统自动化, 2018, 42(14): 99-106. |
HE Kun, YAN Zheng, XU Xiaoyuan, et al. Sobol’ method based global sensitivity analysis of power flow in islanded microgrid[J]. Automation of Electric Power Systems, 2018, 42(14): 99-106. | |
[6] |
TANG Y, REED P, WAGENER T, et al. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation[J]. Hydrology and Earth System Sciences, 2007, 11(2): 793-817.
doi: 10.5194/hess-11-793-2007 URL |
[7] | ROSOLEM R, GUPTA H V, SHUTTLEWORTH W J, et al. A fully multiple-criteria implementation of the Sobol’ method for parameter sensitivity analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: 1-18. |
[8] |
KHORASHADI ZADEH F, NOSSENT J, SARRAZIN F, et al. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model[J]. Environmental Modelling and Software, 2017, 91: 210-222.
doi: 10.1016/j.envsoft.2017.02.001 URL |
[9] | CUKIER R I, LEVINE H B, SHULER K E. Nonlinear sensitivity analysis of multiparameter model systems[J]. Journal of Computational Physics, 1978, 26(1): 1-42. |
[10] |
TARANTOLA S, GATELLI D, MARA T A. Random balance designs for the estimation of first order global sensitivity indices[J]. Reliability Engineering and System Safety, 2006, 91(6): 717-727.
doi: 10.1016/j.ress.2005.06.003 URL |
[11] |
TISSOT J Y, PRIEUR C. Bias correction for the estimation of sensitivity indices based on random balance designs[J]. Reliability Engineering and System Safety, 2012, 107: 205-213.
doi: 10.1016/j.ress.2012.06.010 URL |
[12] |
NOURANI V, SAYYAH FARD M. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes[J]. Advances in Engineering Software, 2012, 47(1): 127-146.
doi: 10.1016/j.advengsoft.2011.12.014 URL |
[13] |
JAIN S K, NAYAK P C, SUDHEER K P. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation[J]. Hydrological Processes, 2008, 22(13): 2225-2234.
doi: 10.1002/hyp.6819 URL |
[14] |
SONG S F, WANG L. Modified GMDH-NN algorithm and its application for global sensitivity analysis[J]. Journal of Computational Physics, 2017, 348: 534-548.
doi: 10.1016/j.jcp.2017.07.027 URL |
[15] |
PARK M Y, HASTIE T. L1-regularization path algorithm for generalized linear models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69(4): 659-677.
doi: 10.1111/j.1467-9868.2007.00607.x URL |
[16] |
NOSSENT J, ELSEN P, BAUWENS W. Sobol’ sensitivity analysis of a complex environmental model[J]. Environmental Modelling and Software, 2011, 26(12): 1515-1525.
doi: 10.1016/j.envsoft.2011.08.010 URL |
[17] | HADJI I, WILDES R P. What do we understand about convolutional networks?[EB/OL].(2018-05-23)[2021-06-11]. https://arxiv.org/abs/1803.08834. |
[18] | LIN M, CHEN Q, YAN S. Network in network[EB/OL]. (2013-12-16) [2021-06-11]. https://arxiv.org/abs/1312.4400. |
[19] | BA, JIMMY LEI, JAMIE RYAN KIROS. Layer normalization[EB/OL] (2016-07-21) [2021-06-13]. https://arxiv.org/abs/1607.06450. |
[20] |
CONFALONIERI R, BELLOCCHI G, BREGAGLIO S, et al. Comparison of sensitivity analysis techniques: A case study with the rice model WARM[J]. Ecological Modelling, 2010, 221(16): 1897-1906.
doi: 10.1016/j.ecolmodel.2010.04.021 URL |
[21] |
BHATTACHARJEE K, PANT M, ZHANG Y D, et al. Multiple Instance Learning with Genetic Pooling for medical data analysis[J]. Pattern Recognition Letters, 2020, 133: 247-255.
doi: 10.1016/j.patrec.2020.02.025 URL |
[22] | GRAHAM B. Fractional max-pooling[EB/OL].(2014-12-18) [2021-06-13]. https://arxiv.org/abs/1412.6071. |
[23] |
MARREL A, IOOSS B, LAURENT B, et al. Calculations of Sobol indices for the Gaussian process metamodel[J]. Reliability Engineering and System Safety, 2009, 94(3), 742-751.
doi: 10.1016/j.ress.2008.07.008 URL |
[24] |
ARCHER G E B, SALTELLI A, SOBOL I M. Sensitivity measures, anova-like techniques and the use of bootstrap[J]. Journal of Statistical Computation and Simulation, 1997, 58(2): 99-120.
doi: 10.1080/00949659708811825 URL |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan, CHEN Yue. A Shared Energy Storage Optimal Operation Method Considering the Risk of Probabilistic Voltage Unbalance Factor Limit Violation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 827-839. |
[3] | QUAN Daying, CHEN Yun, TANG Zeyu, LI Shitong, WANG Xiaofeng, JIN Xiaoping. Radar Signal Recognition Based on Dual Channel Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 877-885. |
[4] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[5] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[6] | WANG Chao, YANG Bo, ZHANG Yuan, GUO Chunyu, YE Liyu. Numerical Simulation and Analysis of Cylindrical Ice Impacting Problem [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 368-378. |
[7] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[8] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[9] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[10] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[11] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[12] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[13] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[14] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[15] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||