Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (6): 746-757.doi: 10.16183/j.cnki.jsjtu.2023.382
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZENG Jincan1, HE Gengsheng1, LI Yaowang2(), DU Ershun2, ZHANG Ning2, ZHU Haojun1
Received:
2023-08-09
Accepted:
2023-10-30
Online:
2025-06-28
Published:
2025-07-04
Contact:
LI Yaowang
E-mail:yaowang_li@126.com
CLC Number:
ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun. A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 746-757.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.382
Tab.3
Calculation performance of different models based on daily data with different K-fold samplings
K折 | 模型方法 | 评估指标 | ||
---|---|---|---|---|
eRMSE | eMAPE | R2 | ||
K=1 | Ridge | 0.315 | 6.122 | 0.852 |
CNN | 0.316 | 21.749 | 0.852 | |
LightGBM | 0.320 | 6.348 | 0.847 | |
CNN-LightGBM | 0.293 | 5.687 | 0.872 | |
K=2 | Ridge | 0.331 | 6.785 | 0.832 |
CNN | 0.348 | 22.810 | 0.814 | |
LightGBM | 0.337 | 7.046 | 0.826 | |
CNN-LightGBM | 0.331 | 6.857 | 0.832 | |
K=3 | Ridge | 0.326 | 6.503 | 0.835 |
CNN | 0.378 | 24.190 | 0.778 | |
LightGBM | 0.337 | 6.914 | 0.823 | |
CNN-LightGBM | 0.300 | 5.929 | 0.860 | |
K=4 | Ridge | 0.339 | 6.805 | 0.830 |
CNN | 0.346 | 23.370 | 0.823 | |
LightGBM | 0.341 | 7.077 | 0.828 | |
CNN-LightGBM | 0.310 | 6.178 | 0.858 | |
K=5 | Ridge | 0.335 | 6.577 | 0.819 |
CNN | 0.356 | 21.831 | 0.796 | |
LightGBM | 0.340 | 6.930 | 0.813 | |
CNN-LightGBM | 0.323 | 6.555 | 0.832 | |
K平均 | Ridge | 0.329 | 6.559 | 0.833 |
CNN | 0.349 | 22.790 | 0.812 | |
LightGBM | 0.335 | 6.863 | 0.827 | |
CNN-LightGBM | 0.311 | 6.241 | 0.851 |
Tab.4
Calculation performance of different models based on hourly data with different K-fold samplings
K折 | 模型方法 | 评估指标 | ||
---|---|---|---|---|
eRMSE | eMAPE | R2 | ||
K=1 | Ridge | 1.480 | 7.210 | 0.870 |
CNN | 1.520 | 25.190 | 0.859 | |
LightGBM | 1.550 | 7.680 | 0.857 | |
CNN-LightGBM | 1.450 | 7.060 | 0.876 | |
K=2 | Ridge | 1.476 | 7.189 | 0.873 |
CNN | 1.584 | 28.290 | 0.854 | |
LightGBM | 1.547 | 7.712 | 0.861 | |
CNN-LightGBM | 1.529 | 7.562 | 0.864 | |
K=3 | Ridge | 1.453 | 7.077 | 0.879 |
CNN | 1.483 | 27.723 | 0.874 | |
LightGBM | 1.536 | 7.674 | 0.864 | |
CNN-LightGBM | 1.414 | 6.869 | 0.885 | |
K=4 | Ridge | 1.550 | 7.717 | 0.857 |
CNN | 1.501 | 25.435 | 0.867 | |
LightGBM | 1.551 | 7.717 | 0.858 | |
CNN-LightGBM | 1.445 | 7.036 | 0.876 | |
K=5 | Ridge | 1.462 | 7.136 | 0.873 |
CNN | 1.506 | 27.291 | 0.866 | |
LightGBM | 1.523 | 7.592 | 0.862 | |
CNN-LightGBM | 1.434 | 7.008 | 0.878 | |
K平均 | Ridge | 1.472 | 7.163 | 0.873 |
CNN | 1.519 | 26.785 | 0.865 | |
LightGBM | 1.542 | 7.675 | 0.861 | |
CNN-LightGBM | 1.455 | 7.100 | 0.876 |
[1] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[2] | 包维瀚, 李姚旺, 季节, 等. 储能系统与双向电力负荷的碳排放核算方法[J]. 电网技术, 2023, 47(8): 3049-3058. |
BAO Weihan, LI Yaowang, JI Jie, et al. Carbon emission accounting method for energy storage system and bidirectional power load[J]. Power System Technology, 2023, 47(8): 3049-3058. | |
[3] | 魏军晓, 耿元波, 王松. 中国水泥碳排放测算的影响因素分析与不确定度计算[J]. 环境科学学报, 2016, 36(11): 4234-4244. |
WEI Junxiao, GENG Yuanbo, WANG Song. Identification of factors influencing CO2 emission estimation from Chinese cement industry and determination of their uncertainty[J]. Acta Scientiae Circumstantiae, 2016, 36(11): 4234-4244. | |
[4] | 马凯, 韩文涛, 丁艺, 等. 煤种对燃煤电厂碳排放经济性的影响研究[J]. 热能动力工程, 2018, 33(9): 142-146. |
MA Kai, HAN Wentao, DING Yi, et al. Study on the influence of coal on the carbon emission economy of coal-fired power plant[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(9): 142-146. | |
[5] | 刘学之, 孙鑫, 朱乾坤, 等. 中国二氧化碳排放量相关计量方法研究综述[J]. 生态经济, 2017, 33(11): 21-27. |
LIU Xuezhi, SUN Xin, ZHU Qiankun, et al. Review on the measurement methods of carbon dioxide emissions in China[J]. Ecological Economy, 2017, 33(11): 21-27. | |
[6] | 王安静, 冯宗宪, 孟渤. 中国30省份的碳排放测算以及碳转移研究[J]. 数量经济技术经济研究, 2017, 34(8): 89-104. |
WANG Anjing, FENG Zongxian, MENG Bo. Mea-sure of carbon emissions and carbon transfers in 30 provinces of China[J]. The Journal of Quantitative & Technical Economics, 2017, 34(8): 89-104. | |
[7] | 吴昊, 任鑫, 朱俊杰. 发电行业二氧化碳排放监测技术现状与综述[J]. 热力发电, 2023, 52(7): 1-13. |
WU Hao, REN Xin, ZHU Junjie. Current situation and review of carbon dioxide emission monitoring technology in power generation industry[J]. Thermal Power Generation, 2023, 52(7): 1-13. | |
[8] | 刘昱良, 李姚旺, 周春雷, 等. 电力系统碳排放计量与分析方法综述[J]. 中国电机工程学报, 2024, 44(6): 2220-2236. |
LIU Yuliang, LI Yaowang, ZHOU Chunlei, et al. Overview of carbon measurement and analysis methods in power systems[J]. Proceedings of the CSEE, 2024, 44(6): 2220-2236. | |
[9] | KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: A network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2386-2394. |
[10] | 张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47(9): 2-12. |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47(9): 2-12. | |
[11] | 李姚旺, 刘昱良, 杨晓斌, 等. 计及电量交易信息的用电碳计量方法[J]. 中国电机工程学报, 2024, 44(2): 439-450. |
LI Yaowang, LIU Yuliang, YANG Xiaobin, et al. Electricity carbon metering method considering electricity transaction information[J]. Proceedings of the CSEE, 2024, 44(2): 439-450. | |
[12] | 刘红琴, 王高天, 陈品文, 等. 地区电力行业碳排放水平测算及其特点分析[J]. 生态经济, 2018, 34(4): 34-39. |
LIU Hongqin, WANG Gaotian, CHEN Pinwen, et al. The level measure and characteristics analysis of carbon emission in regional power industry[J]. Ecological Economy, 2018, 34(4): 34-39. | |
[13] |
胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90.
doi: 10.16183/j.cnki.jsjtu.2022.222 |
HU Zhuangli, LUO Yichu, CAI Hang. A method for carbon emission measurement and a carbon reduction path of urban power sector[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 82-90. | |
[14] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
[15] | 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 329-338. |
WANG Lijuan, ZHANG Jian, WANG Xuesong, et al. Pathway of carbon emission peak in China’s electric power industry[J]. Research of Environmental Sciences, 2022, 35(2): 329-338. | |
[16] | ZHAO J J, KOU L, WANG H T, et al. Carbon emission prediction model and analysis in the Yellow River Basin based on a machine learning method[J]. Sustainability, 2022, 14(10): 6153. |
[17] | LI M L, WANG W, DE G, et al. Forecasting carbon emissions related to energy consumption in Beijing-Tianjin-Hebei Region based on grey prediction theory and extreme learning machine optimized by support vector machine algorithm[J]. Energies, 2018, 11(9): 2475. |
[18] | ARAS S, VAN M H. An interpretable forecasting framework for energy consumption and CO2 emissions[J]. Applied Energy, 2022, 328: 120163. |
[19] | 徐勇戈, 宋伟雪. 基于FCS-SVM的建筑业碳排放预测研究[J]. 生态经济, 2019, 35(11): 37-41. |
XU Yongge, SONG Weixue. Carbon emission prediction of construction industry based on FCS-SVM[J]. Ecological Economy, 2019, 35(11): 37-41. | |
[20] | 叶鎏芳, 钟志鹏, 郑仁广, 等. 基于碳电强度的碳排放监测方法[J]. 能源与环境, 2023(1): 40-44. |
YE Liufang, ZHONG Zhipeng, ZHENG Renguang, et al. Carbon emission monitoring method based on carbon electric intensity[J]. Energy & Environment, 2023(1): 40-44. | |
[21] |
章琳, 袁非牛, 张文睿, 等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56(1): 25-37.
doi: 10.3778/j.issn.1002-8331.1910-0164 |
ZHANG Lin, YUAN Feiniu, ZHANG Wenrui, et al. Review of fully convolutional neural network[J]. Computer Engineering & Applications, 2020, 56(1): 25-37. | |
[22] | TORRES J F, HADJOUT D, SEBAA A, et al. Deep learning for time series forecasting: A survey[J]. Big Data, 2021, 9(1): 3-21. |
[23] | CAO Q, WU Y H, YANG J, et al. Greenhouse temperature prediction based on time-series features and LightGBM[J]. Applied Sciences, 2023, 13(3): 1610. |
[1] | YAN Mingxuan1 (颜铭萱), MIAO Yutong2,3 (苗雨桐), SHENG Shuqian1 (盛淑茜), GAN Xiaoying1 (甘小莺), HE Ben2 (何 奔), SHEN Lan2,3* (沈 兰). Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 153-165. |
[2] | CHEN Hui, HE Gengsheng, LIU Yuliang, ZENG Hongmei, ZHANG Shixu, LI Yaowang. Capacity Allocation Strategy of Energy Storage in Low-Carbon Park Considering Equivalent Energy Storage Characteristics of Thermal System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 863-871. |
[3] | LIU Yuesheng (刘月笙), HE Ning∗ (贺宁), HE Lile (贺利乐), ZHANG Yiwen (张译文), XI Kun (习坤), ZHANG Mengrui (张梦芮). Self-Tuning of MPC Controller for Mobile Robot Path Tracking Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[4] | SUN Yi, GU Jiaxun, ZHENG Shunlin, LI Xiong, LU Chunguang, LIU Wei. Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. |
[5] | SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi. An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165. |
[6] | BAO Zhujie, LI Zhen, WANG Feiliang, PANG Bo, YANG Jian. Prediction of Slip and Torsion Performance of Right-Angle Fasteners Based on Machine Learning Methods [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 242-252. |
[7] | XU Changjie, LI Xinyu. Lateral Deformation Prediction of Deep Foundation Retaining Structures Based on Artificial Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1735-1744. |
[8] | HE Wen, GAO Bin, WANG Qiangqiang, FENG Shaokong, YE Guanlin. A Comprehensive Geophysical Prospection Method Based on Gaussian Mixture Clustering and its Application in Karst Exploration [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1724-1734. |
[9] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[10] | SU Hongjia, LUO Yucheng, LIU Fei. Review of Equipment Effectiveness Evaluation and Supporting Technologies [J]. Air & Space Defense, 2023, 6(3): 29-38. |
[11] | SUN Jie, LI Zihao, ZHANG Shuyu. Application of Machine Learning in Chemical Synthesis and Characterization [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244. |
[12] | GAN Ezhong, LIU Yan, WANG Hairong, WANG Chengguang. Research on Comprehensive Tradeoff of Supportability Based on Machine Learning Performance Measurement Theory [J]. Air & Space Defense, 2023, 6(1): 38-44. |
[13] | ZHANG Pengfei, XU Jingyi, GUO Wei, WU Wei, ZHONG Chen, WEI Wendong. Low-Carbon Transformation of the Power System in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 293-302. |
[14] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[15] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||