Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (1): 70-80.doi: 10.16183/j.cnki.jsjtu.2021.167
Previous Articles Next Articles
SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong(), ZHENG Xiaohu
Received:
2021-05-21
Online:
2022-01-28
Published:
2022-01-21
Contact:
BAO Jingsong
E-mail:bao@dhu.edu.cn
CLC Number:
SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.167
[1] | RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product: Literature review and implications in an aircraft[J]. Transdisciplinary Lifecycle Analysis of Systems, 2015: 657-666. |
[2] | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. |
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. | |
[3] |
TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9/10/11/12):3563-3576.
doi: 10.1007/s00170-017-0233-1 URL |
[4] |
LU Y Q, LIU C, WANG K I K, et al. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61:101837.
doi: 10.1016/j.rcim.2019.101837 URL |
[5] | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1):1-18. |
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18. | |
[6] |
CHENG D J, ZHANG J, HU Z T, et al. A digital twin-driven approach for on-line controlling quality of marine diesel engine critical parts[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(10):1821-1841.
doi: 10.1007/s12541-020-00403-y URL |
[7] |
ZHANG S Z, KANG C F, LIU Z F, et al. A product quality monitor model with the digital twin model and the stacked auto encoder[J]. IEEE Access, 2020, 8:113826-113836.
doi: 10.1109/Access.6287639 URL |
[8] | WANG K J, LEE Y H, ANGELICA S. Digital twin design for real-time monitoring—A case study of die cutting machine[J]. International Journal of Production Research, 2020: 1-15. |
[9] |
LIU S M, LU Y Q, LI J, et al. Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71:102123.
doi: 10.1016/j.rcim.2021.102123 URL |
[10] |
ZHENG X C, PSAROMMATIS F, PETRALI P, et al. A quality-oriented digital twin modelling method for manufacturing processes based on a multi-agent architecture[J]. Procedia Manufacturing, 2020, 51:309-315.
doi: 10.1016/j.promfg.2020.10.044 URL |
[11] | 胡富琴, 杨芸, 刘世民, 等. 航天薄壁件旋压成型数字孪生高保真建模方法[DB/OL]. (2020-12-03)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20201202006&uniplatform=NZKPT&v=l5%25mmd2FDG1c37fujR8sUdeYLf9B5r65UCl4%25mmd2Fa2zSBKWwIqELwei0ELnCptUEaWMpEu2k. |
HU Fuqin, YANG Yun, LIU Shimin, et al. Digital Twin High-fidelity Modeling Method for Spinning Forming of Aerospace Thin-walled Parts[DB/OL]. (2020-12-03)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ20201202006&uniplatform=NZKPT&v=l5%25mmd2FDG1c37fujR8sUdeYLf9B5r65UCl4%25mmd2Fa2zSBKWwIqELwei0ELnCptUEaWMpEu2k. | |
[12] |
QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP, 2019, 81:1388-1393.
doi: 10.1016/j.procir.2019.04.049 URL |
[13] |
CHRISTIAND, KISWANTO G. Digital twin approach for tool wear monitoring of micro-milling[J]. Procedia CIRP, 2020, 93:1532-1537.
doi: 10.1016/j.procir.2020.03.140 URL |
[14] | 胡家文, 蒋祖华, 韩李杰. 工况时变下设备预防维护策略[J]. 上海交通大学学报, 2016, 50(5):736-741. |
HU Jiawen, JIANG Zuhua, HAN Lijie. Preventive maintenance for machine operating in dynamic environmental state[J]. Journal of Shanghai Jiao Tong University, 2016, 50(5):736-741. | |
[15] | 姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 26(9):2299-2320. |
YAO Xifan, JING Xuan, ZHANG Jianming, et al. Towards smart manufacturing for new industrial revolution[J]. Computer Integrated Manufacturing Systems, 2020, 26(09):2299-2320. | |
[16] |
WEI Y L, HU T L, ZHOU T T, et al. Consistency retention method for CNC machine tool digital twin model[J]. Journal of Manufacturing Systems, 2021, 58:313-322.
doi: 10.1016/j.jmsy.2020.06.002 URL |
[17] |
CHAKRABORTY S, ADHIKARI S. Machine learning based digital twin for dynamical systems with multiple time-scales[J]. Computers & Structures, 2021, 243:106410.
doi: 10.1016/j.compstruc.2020.106410 URL |
[18] | 孙惠斌, 潘军林, 张纪铎, 等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统, 2019, 25(6):1474-1480. |
SUN Huibin, PAN Junlin, ZHANG Jiduo, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1474-1480. | |
[19] |
ZHANG C Y, XU W J, LIU J Y, et al. A reconfigurable modeling approach for digital twin-based manufacturing system[J]. Procedia CIRP, 2019, 83:118-125.
doi: 10.1016/j.procir.2019.03.141 URL |
[20] |
ZHANG C Y, XU W J, LIU J Y, et al. Digital twin-enabled reconfigurable modeling for smart manufacturing systems[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(7/8):709-733.
doi: 10.1080/0951192X.2019.1699256 URL |
[21] |
TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12):2755-2764.
doi: 10.1016/j.cja.2019.09.001 URL |
[22] |
DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145:346-352.
doi: 10.1016/j.ijmecsci.2018.07.004 URL |
[23] | 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39. |
ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39. | |
[24] | 储成龙. 钛合金铣削表面粗糙度预测建模[D]. 南京: 南京航空航天大学, 2010. |
CHU Chenglong. Prediction modelling of surface roughness of Ti alloy milling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. | |
[25] | 许敏俊, 刘世民, 沈慧, 等. 数字孪生驱动下的弱刚性钻削毛刺控制[DB/OL]. (2021-06-18)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ2021061700C&uniplatform=NZKPT&v=EfDktvpY4SBOwwS6TS4QLlTZjbR7nWvc3en%25mmd2FMDFVvXB9vWzS2wo6b3C0cHx8SIpv. |
XU Minjun, LIU Shimin, SHEN Hui, et al. Burr control of weak rigid drilling process driven by digital twin[DB/OL].(2021-06-18)[2021-10-10]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJJ2021061700C&uniplatform=NZKPT&v=EfDktvpY4SBOwwS6TS4QLlTZjbR7nWvc3en%25mmd2FMDFVvXB9vWzS2wo6b3C0cHx8SIpv. | |
[26] |
DAY O, KHOSHGOFTAAR T M. A survey on heterogeneous transfer learning[J]. Journal of Big Data, 2017, 4(1):1-42.
doi: 10.1186/s40537-016-0062-3 URL |
[27] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks? [DB/OL].(2014-09-06)[2021-10-10]. https://arxiv.org/abs/1411.1792v1. |
[28] | LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[DB/OL].(2015-07-06)[2021-10-10]. https://dl.acm.org/doi/10.5555/3045118.3045130. |
[29] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL].(2014-12-10)[2021-10-10]. https://arxiv.org/abs/1412.3474. |
[1] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[2] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[3] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[4] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[5] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[6] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[7] | WANG Yuexing, WU Yongguo, XU Chuangang. Infrared Ship Target Detection Algorithm Based on Deep Transfer Learning [J]. Air & Space Defense, 2021, 4(4): 61-66. |
[8] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[9] | LIU Mingming,GAO Nan,LIU Quandong,JIN Xinglian,ZHANG Xu,CHEN Zhao. Application and Exploration of Virtual Reality Technology in Main Control Room Design of Nuclear Power Plant [J]. Journal of Shanghai Jiaotong University, 2019, 53(Sup.1): 29-32. |
[10] | ZHONG Haowen (钟昊文), WANG Chao (王超), TUO Hongya (庹红娅), HU Jian (胡健), QIAO Lingfeng (乔凌峰), JING Zhongliang (敬忠良). Transfer Learning Based on Joint Feature Matching and Adversarial Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 699-705. |
[11] | LI Yuan,ZHANG Xinmin. Non-Gaussian Information Based JITL Soft Sensor Model [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 897-901. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||