Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (11): 1470-1478.doi: 10.16183/j.cnki.jsjtu.2022.256
• Guidance, Navigation and Control • Previous Articles Next Articles
LI Zhaoting, ZHOU Xiang, ZHANG Hongbo(), TANG Guojian
Received:
2022-07-05
Online:
2022-11-28
Published:
2022-12-02
Contact:
ZHANG Hongbo
E-mail:zhanghb1304@nudt.edu.cn
CLC Number:
LI Zhaoting, ZHOU Xiang, ZHANG Hongbo, TANG Guojian. Analysis of Entry Footprint Based on Pseudospectral Method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1470-1478.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.256
[1] | 曾夕娟, 钟范俊, 丁学良, 等. 一种可重复使用再入飞行器的覆盖区求解方法[J]. 载人航天, 2017, 23(1): 14-20. |
ZENG Xijuan, ZHONG Fanjun, DING Xueliang, et al. Method for landing footprint generation in reusable vehicles[J]. Manned Spaceflight, 2017, 23(1): 14-20. | |
[2] | 常松涛, 杨业, 王永骥, 等. 计算再入飞行器可达区域的快速算法[J]. 华中科技大学学报(自然科学版), 2012, 40(7): 1-5. |
CHANG Songtao, YANG Ye, WANG Yongji, et al. A rapid algorithm for generating landing footprint for entry vehicles[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(7): 1-5. | |
[3] |
HE R Z, ZHANG Y L, LIU L L, et al. Feasible footprint generation with uncertainty effects[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(1): 138-150.
doi: 10.1177/0954410017728971 URL |
[4] |
ZHANG Y L, CHEN K J, LIU L H, et al. Rapid generation of landing footprint based on geometry-predicted trajectory[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(10): 1851-1861.
doi: 10.1177/0954410016662066 URL |
[5] |
LIU Q G, LIU X X, WU J, et al. A fast computational method for the landing footprints of space-to-ground vehicles[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 1062-1076.
doi: 10.23919/JSEE.2020.000080 URL |
[6] | ZHANG R, LI Z, SHI L. A general footprint generation approach for lifting re-entry vehicle[C]∥28th Congress of the International Council of the Aeronautical Sciences 2012. Brisbane, Australia: ICAS, 2012: 3137-3143. |
[7] |
章吉力, 周大鹏, 杨大鹏, 等. 禁飞区影响下的空天飞机可达区域计算方法[J]. 航空学报, 2021, 42(8): 525771.
doi: 10.7527/S1000-6893.2021.25771 |
ZHANG Jili, ZHOU Dapeng, YANG Dapeng, et al. Computation method for reachable domain of aerospace plane under the influence of no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525771.
doi: 10.7527/S1000-6893.2021.25771 |
|
[8] | 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. |
WU Nan, WANG Feng, ZHAO Min, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6. | |
[9] |
LI H F, ZHANG R, LI Z Y, et al. Footprint problem with angle of attack optimization for high lifting reentry vehicle[J]. Chinese Journal of Aeronautics, 2012, 25(2): 243-251.
doi: 10.1016/S1000-9361(11)60384-1 URL |
[10] |
WANG T, ZHANG H B, LI Y Y, et al. An improved footprint generation method for entry vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(10): 1951-1956.
doi: 10.1177/0954410016662060 URL |
[11] |
LU P, XUE S B. Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 756-767.
doi: 10.2514/1.46833 URL |
[12] | 杜昕, 刘会龙. 探月飞船跳跃式再入轨迹可达域分析[J]. 载人航天, 2017, 23(2): 163-167. |
DU Xin, LIU Huilong. Analysis of reachable sets of lunar module skip entry trajectory[J]. Manned Spaceflight, 2017, 23(2): 163-167. | |
[13] | 乔浩, 李曾浩, 李新国, 等. 飞行器可达性问题的统一求解方法研究[J]. 弹道学报, 2017, 29(4): 9-14. |
QIAO Hao, LI Zenghao, LI Xinguo, et al. A unified numerical method for aircraft accessibility problems[J]. Journal of Ballistics, 2017, 29(4): 9-14. | |
[14] | 明超, 孙瑞胜, 梁卓, 等. 多脉冲导弹可达域优化方法设计与分析[J]. 国防科技大学学报, 2016, 38(1): 143-149. |
MING Chao, SUN Ruisheng, LIANG Zhuo, et al. Design and analysis of footprint optimization method for multiple-pulse missile[J]. Journal of National University of Defense Technology, 2016, 38(1): 143-149. | |
[15] | 樊朋飞, 郭云鹤, 凡永华, 等. HGV平衡滑翔式轨迹可达区域计算方法研究[J]. 计算机测量与控制, 2019, 27(5): 136-140. |
FAN Pengfei, GUO Yunhe, FAN Yonghua, et al. Footprint calculation of HGV with equilibrium gliding trajectory[J]. Computer Measurement & Control, 2019, 27(5): 136-140. | |
[16] | 赵吉松, 张建宏, 李爽. 高超声速滑翔飞行器再入轨迹快速、高精度优化[J]. 宇航学报, 2019, 40(9): 1034-1043. |
ZHAO Jisong, ZHANG Jianhong, LI Shuang. Rapid and high-accuracy approach for hypersonic glide vehicle reentry trajectory optimization[J]. Journal of Astronautics, 2019, 40(9): 1034-1043. | |
[17] | 蔺君, 何英姿, 黄盘兴. 基于差分进化算法的再入可达域快速计算[J]. 中国空间科学技术, 2020, 40(4): 54-60. |
LIN Jun, HE Yingzi, HUANG Panxing. Fast reentry landing footprint calculation using differential evolution algorithm[J]. Chinese Space Science and Technology, 2020, 40(4): 54-60. | |
[18] | 梁巨平, 周韬, 周浩. 再入飞行器平稳滑翔可达区域计算分析[J]. 兵器装备工程学报, 2018, 39(5): 112-116. |
LIANG Juping, ZHOU Tao, ZHOU Hao. Footprint generation of steady glide reentry vehicle[J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 112-116. | |
[19] |
赵江, 周锐. 基于粒子群优化的再入可达区计算方法研究[J]. 兵工学报, 2015, 36(9): 1680-1687.
doi: 10.3969/j.issn.1000-1093.2015.09.012 |
ZHAO Jiang, ZHOU Rui. Landing footprint computation based on particle swarm optimization[J]. Acta Armamentarii, 2015, 36(9): 1680-1687.
doi: 10.3969/j.issn.1000-1093.2015.09.012 |
|
[20] | 孙勇, 段广仁, 张卯瑞, 等. 基于拟能量的高超声速飞行器再入轨迹优化[J]. 上海交通大学学报, 2011, 45(2): 262-266. |
SUN Yong, DUAN Guangren, ZHANG Maorui, et al. Reentry trajectory optimization of hypersonic vehicle based on pseudo energy[J]. Journal of Shanghai Jiao Tong University, 2011, 45(2): 262-266. | |
[21] | 王涛, 张洪波, 李永远, 等. Gauss伪谱法的再入可达域计算方法[J]. 国防科技大学学报, 2016, 38(3): 75-80. |
WANG Tao, ZHANG Hongbo, LI Yongyuan, et al. Landing footprint generation of entry vehicle based on Gauss pseudospectral method[J]. Journal of National University of Defense Technology, 2016, 38(3): 75-80. | |
[22] | 李柯, 聂万胜, 冯必鸣. 助推-滑翔飞行器可达区域影响因素研究[J]. 现代防御技术, 2013, 41(3): 42-47. |
LI Ke, NIE Wansheng, FENG Biming. Affecting factor of footprint for boost-glide vehicle[J]. Modern Defence Technology, 2013, 41(3): 42-47. | |
[23] | WANG Z, YANG M, HU H X, et al. Landing footprint computation and simulation for spacecraft of reentry phase[C]∥Signal and Information Processing, Networking and Computers. Singapore: Springer, 2020: 387-393. |
[24] | 解永锋, 唐硕. 亚轨道飞行器再入可达域快速计算方法[J]. 飞行力学, 2011, 29(4): 72-76. |
XIE Yongfeng, TANG Shuo. Rapid calculation of entry footprint of suborbital launch vehicles[J]. Flight Dynamics, 2011, 29(4): 72-76. | |
[25] |
XIE Y, LIU L H, LIU J, et al. Rapid generation of entry trajectories with waypoint and no-fly zone constraints[J]. Acta Astronautica, 2012, 77: 167-181.
doi: 10.1016/j.actaastro.2012.04.006 URL |
[26] | RICHIE G. The common aero vehicle—Space delivery system of the future[C]∥Space Technology Conference and Exposition. Reston, Virginia: AIAA, 1999: 4435. |
[27] |
GARG D, PATTERSON M, HAGER W W, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica, 2010, 46(11): 1843-1851.
doi: 10.1016/j.automatica.2010.06.048 URL |
[28] |
GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131.
doi: 10.1137/S0036144504446096 URL |
[29] |
WÄCHTER A, BIEGLER L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106(1): 25-57.
doi: 10.1007/s10107-004-0559-y URL |
[30] |
PATTERSON M A, RAO A V. Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems[J]. Journal of Spacecraft and Rockets, 2012, 49(2): 354-377.
doi: 10.2514/1.A32071 URL |
[1] | CHEN Yongxin. Integrated Design Optimization for Aerodynamic Configuration and Trajectory of Gliding Vehicle [J]. Air & Space Defense, 2021, 4(3): 76-84. |
[2] | ZHOU Liang, WANG Haoyu, SHANG Haibin, CAO Li, LAN Guofeng. Research on Optimal Design of the Glide Trajectory of Space-based Reentry Vehicle Based on Gaussian Pseudo Spectral Method [J]. Air & Space Defense, 2020, 3(3): 89-95. |
[3] | CHENG Ruifeng1,LIU Weidong1,GAO Li’e1,KANG Zhiqiang2. Differential Game Trajectory Optimization Based on Receding Horizon Control for Multiple Constraints Tracking Systems with Additive Disturbance [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1473-1479. |
[4] | Geng-shou XIA, Guo-zhi LI. Influence Factors of Farmers' Recycling Waste Agricultural Pellicle ——Based on a Survey of 596 Rural Households in Jiangxi Province [J]. Journal of Shanghai Jiaotong University (Agricultural Sciences), 2016, 34(1): 31-35. |
[5] | ZHANG Lixue1,WANG Zhongwei1,YANG Xixiang1,SONG Qinglei2. Ascent Trajectory Planning for Stratospheric Airship Based on Gauss Pseudospectral Method [J]. Journal of Shanghai Jiaotong University, 2013, 47(08): 1205-1209. |
[6] |
SUN Yong,DUAN Guangren,ZHANG Maorui,ZHANG Ze . Reentry Trajectory Optimization of Hypersonic Vehicle Based on Pseudo Energy [J]. Journal of Shanghai Jiaotong University, 2011, 45(02): 262-0266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||