[1] |
袁覃恩, 慕晓冬, 易昭湘, 等. 基于局部动态贝叶斯网络的无人机态势评估[J]. 火力与指挥控制, 2018, 43(4): 57-61.
|
|
YUAN Tianen, MU Xiaodong, YI Zhaoxiang, et al. Real-time evaluation of UAV situation based on local dynamic Bayesian network[J]. Fire Control and Command Control, 2018, 43(4): 57-61.
|
[2] |
SHI G Q, PU J W, ZHANG L, et al. Situation assessment based on multi-entity Bayesian network[C]∥2020 IEEE 16th International Conference on Control & Automation. Singapore: IEEE, 2020: 702-707.
|
[3] |
高阳阳, 余敏建, 王子博琳. 基于云模型和改进熵权的空战多目标威胁等级评估[J]. 火力与指挥控制, 2018, 43(9): 35-39.
|
|
GAO Yangyang, YU Minjian, WANG Zibolin. Target threat assessment technology for UAV air combat based on cloud model and improved entropy weight[J]. Fire Control and Command Control, 2018, 43(9): 35-39.
|
[4] |
奚之飞, 徐安, 寇英信, 等. 基于PCA-MPSO-ELM的空战目标威胁评估[J]. 航空学报, 2020, 41(9): 216-231.
|
|
XI Zhifei, XU An, KOU Yingxin, et al. Target threat assessment in air combat based on PCA-MPSO-ELM algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 216-231.
|
[5] |
GAO Y, LI D. Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism[J]. Knowledge-Based Systems, 2020, 188: 105034.
doi: 10.1016/j.knosys.2019.105034
URL
|
[6] |
韩博文, 姚佩阳, 钟赟, 等. 基于QABC-IFMADM算法的有人/无人机编队作战威胁评估[J]. 电子学报, 2018, 46(7): 1584-1592.
doi: 10.3969/j.issn.0372-2112.2018.07.007
|
|
HAN B, YAO P, ZHONG Y, et al. Threat assessment of manned/unmanned aerial vehicle formation based on QABC-IFMADM algorithm[J]. Acta Electronica Sinica, 2018, 46(7): 1584.
|
[7] |
ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 305-310.
doi: 10.21629/JSEE.2018.02.11
URL
|
[8] |
GAO Y, LI D, ZHONG H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103276.
doi: 10.1016/j.engappai.2019.103276
URL
|
[9] |
赵晓冬, 王飞, 张妮. 一种基于前景理论的毕达哥拉斯犹豫模糊不确定语言 ELECTRE 多属性决策方法[J]. 控制与决策, 2020, 35(9): 2245-2251.
|
|
ZHAO Xiaodong, WANG Fei, ZHANG Ni. Method for multi-attribute decision-making with Pythagorean hesitant fuzzy uncertain linguistic ELECTRE based on prospect theory[J]. Control and Decision, 2020, 35(9): 2245-2251.
|
[10] |
奚之飞, 徐安, 寇英信, 等. 基于前景理论的空战目标威胁评估[J]. 兵工学报, 2020, 41(6): 1236-1248.
doi: 10.3969/j.issn.1000-1093.2020.06.021
|
|
XI Zhifei, XU An, KOU Yingxin, et al. Air combat target threat assessment based on prospect theory[J]. Acta Armamentraii, 2020, 41(6): 1236-1248.
|
[11] |
胡涛, 王栋, 黄震宇, 等. 基于前景理论和 VIKOR 法的空战威胁评估[J]. 空军工程大学学报(自然科学版), 2020, 21(5): 62-68.
|
|
HU Tao, WANG Dong, HUANG Zhenyu, et al. Air combat threat assessment based on prospect theory and VIKOR method[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(5): 62-68.
|
[12] |
YAO Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6): 1080-1096.
doi: 10.1016/j.ins.2010.11.019
URL
|
[13] |
TVERSKY A, KAHNEMAN D. Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323.
doi: 10.1007/BF00122574
URL
|
[14] |
马健, 孙秀霞. 基于效用曲线改进的前景理论价值函数[J]. 信息与控制, 2011, 40(4): 501-506.
|
|
MA Jian, SUN Xiuxia. Modified value function in prospect theory based on utility curve[J]. Information and Control, 2011, 40(4): 501-506.
|
[15] |
GUO Z, CHEN W, ZHANG J, et al. Hazard assessment of potentially dangerous bodies within a cliff based on the Fuzzy-AHP method: A case study of the Mogao Grottoes, China[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 1009-1020.
doi: 10.1007/s10064-016-0865-7
URL
|
[16] |
WANG Y, LIU S Y, NIU W, et al. Threat assessment method based on intuitionistic fuzzy similarity measurement reasoning with orientation[J]. China Communications, 2014, 11(6): 119-128.
|
[17] |
XU H, ZHOU J, XU W. A decision-making rule for modeling travelers’ route choice behavior based on cumulative prospect theory[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(2): 218-228.
doi: 10.1016/j.trc.2010.05.009
URL
|