上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 746-757.doi: 10.16183/j.cnki.jsjtu.2023.382

• 新型电力系统与综合能源 • 上一篇    下一篇

基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法

曾金灿1, 何耿生1, 李姚旺2(), 杜尔顺2, 张宁2, 朱浩骏1   

  1. 1.南方电网能源发展研究院, 广州 510700
    2.清华四川能源互联网研究院,成都 610213
  • 收稿日期:2023-08-09 接受日期:2023-10-30 出版日期:2025-06-28 发布日期:2025-07-04
  • 通讯作者: 李姚旺 E-mail:yaowang_li@126.com
  • 作者简介:曾金灿(1989—),工程师,从事能源电力规划和电碳耦合技术研究.

A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM

ZENG Jincan1, HE Gengsheng1, LI Yaowang2(), DU Ershun2, ZHANG Ning2, ZHU Haojun1   

  1. 1. Energy Research Institute of China Southern Power Grid Co., Ltd., Guangzhou 510700, China
    2. Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China
  • Received:2023-08-09 Accepted:2023-10-30 Online:2025-06-28 Published:2025-07-04
  • Contact: LI Yaowang E-mail:yaowang_li@126.com

摘要:

电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况.

关键词: 以电折碳, 卷积神经网络, 轻量级梯度提升树算法, 碳排放, 机器学习, 组合模型

Abstract:

The electric power industry plays a pivotal role in carbon emission control. Accurate and real-time accounting of carbon emissions in the power industry is essential for supporting the carbon reduction of the power industry. At present, the measurement of carbon emissions in the power industry relies mainly on direct measurement or the accounting methods, which often struggles to balance low measurement costs with real-time accuracy. Therefore, in this paper, the robust power data infrastructure in the power industry is leveraged and the correlation between electricity consumption and carbon emissions is explored to propose a short-term electricity-to-carbon method using machine learning methods based on historical data of electricity. This method utilizes convolutional neural networks (CNNs) for feature extraction, and light gradient boosting machine (LightGBM) for carbon emission estimation based on extracted features. Moreover, K-fold cross-validation is used in model training, with parameter optimization using grid search to enhance the generalization capability and robustness of the model. To validate the proposed method, it is compared with other machine learning models under the same data segmentation condition for daily and hourly data sets. The results indicate that the proposed model outperforms other models in both performance evaluation and the consistency between estimated and target values.

Key words: carbon emission accounting using electricity data, convolutional neural networks (CNNs), light gradient boosting machine (LightGBM), carbon emissions, machine learning, combined model

中图分类号: