上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 746-757.doi: 10.16183/j.cnki.jsjtu.2023.382
曾金灿1, 何耿生1, 李姚旺2(), 杜尔顺2, 张宁2, 朱浩骏1
收稿日期:
2023-08-09
接受日期:
2023-10-30
出版日期:
2025-06-28
发布日期:
2025-07-04
通讯作者:
李姚旺
E-mail:yaowang_li@126.com
作者简介:
曾金灿(1989—),工程师,从事能源电力规划和电碳耦合技术研究.
ZENG Jincan1, HE Gengsheng1, LI Yaowang2(), DU Ershun2, ZHANG Ning2, ZHU Haojun1
Received:
2023-08-09
Accepted:
2023-10-30
Online:
2025-06-28
Published:
2025-07-04
Contact:
LI Yaowang
E-mail:yaowang_li@126.com
摘要:
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况.
中图分类号:
曾金灿, 何耿生, 李姚旺, 杜尔顺, 张宁, 朱浩骏. 基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法[J]. 上海交通大学学报, 2025, 59(6): 746-757.
ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun. A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 746-757.
表3
基于日度数据不同K折取样下不同模型的测算效果
K折 | 模型方法 | 评估指标 | ||
---|---|---|---|---|
eRMSE | eMAPE | R2 | ||
K=1 | Ridge | 0.315 | 6.122 | 0.852 |
CNN | 0.316 | 21.749 | 0.852 | |
LightGBM | 0.320 | 6.348 | 0.847 | |
CNN-LightGBM | 0.293 | 5.687 | 0.872 | |
K=2 | Ridge | 0.331 | 6.785 | 0.832 |
CNN | 0.348 | 22.810 | 0.814 | |
LightGBM | 0.337 | 7.046 | 0.826 | |
CNN-LightGBM | 0.331 | 6.857 | 0.832 | |
K=3 | Ridge | 0.326 | 6.503 | 0.835 |
CNN | 0.378 | 24.190 | 0.778 | |
LightGBM | 0.337 | 6.914 | 0.823 | |
CNN-LightGBM | 0.300 | 5.929 | 0.860 | |
K=4 | Ridge | 0.339 | 6.805 | 0.830 |
CNN | 0.346 | 23.370 | 0.823 | |
LightGBM | 0.341 | 7.077 | 0.828 | |
CNN-LightGBM | 0.310 | 6.178 | 0.858 | |
K=5 | Ridge | 0.335 | 6.577 | 0.819 |
CNN | 0.356 | 21.831 | 0.796 | |
LightGBM | 0.340 | 6.930 | 0.813 | |
CNN-LightGBM | 0.323 | 6.555 | 0.832 | |
K平均 | Ridge | 0.329 | 6.559 | 0.833 |
CNN | 0.349 | 22.790 | 0.812 | |
LightGBM | 0.335 | 6.863 | 0.827 | |
CNN-LightGBM | 0.311 | 6.241 | 0.851 |
表4
基于小时数据不同K折取样下不同模型的测算效果
K折 | 模型方法 | 评估指标 | ||
---|---|---|---|---|
eRMSE | eMAPE | R2 | ||
K=1 | Ridge | 1.480 | 7.210 | 0.870 |
CNN | 1.520 | 25.190 | 0.859 | |
LightGBM | 1.550 | 7.680 | 0.857 | |
CNN-LightGBM | 1.450 | 7.060 | 0.876 | |
K=2 | Ridge | 1.476 | 7.189 | 0.873 |
CNN | 1.584 | 28.290 | 0.854 | |
LightGBM | 1.547 | 7.712 | 0.861 | |
CNN-LightGBM | 1.529 | 7.562 | 0.864 | |
K=3 | Ridge | 1.453 | 7.077 | 0.879 |
CNN | 1.483 | 27.723 | 0.874 | |
LightGBM | 1.536 | 7.674 | 0.864 | |
CNN-LightGBM | 1.414 | 6.869 | 0.885 | |
K=4 | Ridge | 1.550 | 7.717 | 0.857 |
CNN | 1.501 | 25.435 | 0.867 | |
LightGBM | 1.551 | 7.717 | 0.858 | |
CNN-LightGBM | 1.445 | 7.036 | 0.876 | |
K=5 | Ridge | 1.462 | 7.136 | 0.873 |
CNN | 1.506 | 27.291 | 0.866 | |
LightGBM | 1.523 | 7.592 | 0.862 | |
CNN-LightGBM | 1.434 | 7.008 | 0.878 | |
K平均 | Ridge | 1.472 | 7.163 | 0.873 |
CNN | 1.519 | 26.785 | 0.865 | |
LightGBM | 1.542 | 7.675 | 0.861 | |
CNN-LightGBM | 1.455 | 7.100 | 0.876 |
[1] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[2] | 包维瀚, 李姚旺, 季节, 等. 储能系统与双向电力负荷的碳排放核算方法[J]. 电网技术, 2023, 47(8): 3049-3058. |
BAO Weihan, LI Yaowang, JI Jie, et al. Carbon emission accounting method for energy storage system and bidirectional power load[J]. Power System Technology, 2023, 47(8): 3049-3058. | |
[3] | 魏军晓, 耿元波, 王松. 中国水泥碳排放测算的影响因素分析与不确定度计算[J]. 环境科学学报, 2016, 36(11): 4234-4244. |
WEI Junxiao, GENG Yuanbo, WANG Song. Identification of factors influencing CO2 emission estimation from Chinese cement industry and determination of their uncertainty[J]. Acta Scientiae Circumstantiae, 2016, 36(11): 4234-4244. | |
[4] | 马凯, 韩文涛, 丁艺, 等. 煤种对燃煤电厂碳排放经济性的影响研究[J]. 热能动力工程, 2018, 33(9): 142-146. |
MA Kai, HAN Wentao, DING Yi, et al. Study on the influence of coal on the carbon emission economy of coal-fired power plant[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(9): 142-146. | |
[5] | 刘学之, 孙鑫, 朱乾坤, 等. 中国二氧化碳排放量相关计量方法研究综述[J]. 生态经济, 2017, 33(11): 21-27. |
LIU Xuezhi, SUN Xin, ZHU Qiankun, et al. Review on the measurement methods of carbon dioxide emissions in China[J]. Ecological Economy, 2017, 33(11): 21-27. | |
[6] | 王安静, 冯宗宪, 孟渤. 中国30省份的碳排放测算以及碳转移研究[J]. 数量经济技术经济研究, 2017, 34(8): 89-104. |
WANG Anjing, FENG Zongxian, MENG Bo. Mea-sure of carbon emissions and carbon transfers in 30 provinces of China[J]. The Journal of Quantitative & Technical Economics, 2017, 34(8): 89-104. | |
[7] | 吴昊, 任鑫, 朱俊杰. 发电行业二氧化碳排放监测技术现状与综述[J]. 热力发电, 2023, 52(7): 1-13. |
WU Hao, REN Xin, ZHU Junjie. Current situation and review of carbon dioxide emission monitoring technology in power generation industry[J]. Thermal Power Generation, 2023, 52(7): 1-13. | |
[8] | 刘昱良, 李姚旺, 周春雷, 等. 电力系统碳排放计量与分析方法综述[J]. 中国电机工程学报, 2024, 44(6): 2220-2236. |
LIU Yuliang, LI Yaowang, ZHOU Chunlei, et al. Overview of carbon measurement and analysis methods in power systems[J]. Proceedings of the CSEE, 2024, 44(6): 2220-2236. | |
[9] | KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: A network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2386-2394. |
[10] | 张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47(9): 2-12. |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47(9): 2-12. | |
[11] | 李姚旺, 刘昱良, 杨晓斌, 等. 计及电量交易信息的用电碳计量方法[J]. 中国电机工程学报, 2024, 44(2): 439-450. |
LI Yaowang, LIU Yuliang, YANG Xiaobin, et al. Electricity carbon metering method considering electricity transaction information[J]. Proceedings of the CSEE, 2024, 44(2): 439-450. | |
[12] | 刘红琴, 王高天, 陈品文, 等. 地区电力行业碳排放水平测算及其特点分析[J]. 生态经济, 2018, 34(4): 34-39. |
LIU Hongqin, WANG Gaotian, CHEN Pinwen, et al. The level measure and characteristics analysis of carbon emission in regional power industry[J]. Ecological Economy, 2018, 34(4): 34-39. | |
[13] |
胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90.
doi: 10.16183/j.cnki.jsjtu.2022.222 |
HU Zhuangli, LUO Yichu, CAI Hang. A method for carbon emission measurement and a carbon reduction path of urban power sector[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 82-90. | |
[14] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
[15] | 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 329-338. |
WANG Lijuan, ZHANG Jian, WANG Xuesong, et al. Pathway of carbon emission peak in China’s electric power industry[J]. Research of Environmental Sciences, 2022, 35(2): 329-338. | |
[16] | ZHAO J J, KOU L, WANG H T, et al. Carbon emission prediction model and analysis in the Yellow River Basin based on a machine learning method[J]. Sustainability, 2022, 14(10): 6153. |
[17] | LI M L, WANG W, DE G, et al. Forecasting carbon emissions related to energy consumption in Beijing-Tianjin-Hebei Region based on grey prediction theory and extreme learning machine optimized by support vector machine algorithm[J]. Energies, 2018, 11(9): 2475. |
[18] | ARAS S, VAN M H. An interpretable forecasting framework for energy consumption and CO2 emissions[J]. Applied Energy, 2022, 328: 120163. |
[19] | 徐勇戈, 宋伟雪. 基于FCS-SVM的建筑业碳排放预测研究[J]. 生态经济, 2019, 35(11): 37-41. |
XU Yongge, SONG Weixue. Carbon emission prediction of construction industry based on FCS-SVM[J]. Ecological Economy, 2019, 35(11): 37-41. | |
[20] | 叶鎏芳, 钟志鹏, 郑仁广, 等. 基于碳电强度的碳排放监测方法[J]. 能源与环境, 2023(1): 40-44. |
YE Liufang, ZHONG Zhipeng, ZHENG Renguang, et al. Carbon emission monitoring method based on carbon electric intensity[J]. Energy & Environment, 2023(1): 40-44. | |
[21] |
章琳, 袁非牛, 张文睿, 等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56(1): 25-37.
doi: 10.3778/j.issn.1002-8331.1910-0164 |
ZHANG Lin, YUAN Feiniu, ZHANG Wenrui, et al. Review of fully convolutional neural network[J]. Computer Engineering & Applications, 2020, 56(1): 25-37. | |
[22] | TORRES J F, HADJOUT D, SEBAA A, et al. Deep learning for time series forecasting: A survey[J]. Big Data, 2021, 9(1): 3-21. |
[23] | CAO Q, WU Y H, YANG J, et al. Greenhouse temperature prediction based on time-series features and LightGBM[J]. Applied Sciences, 2023, 13(3): 1610. |
[1] | 高波, 李飞, 史轮, 陶鹏, 石振刚, 张超, 彭杰, 赵一伊. 基于实时碳强度评估的社区综合能源系统低碳互动管理策略[J]. 上海交通大学学报, 2025, 59(5): 580-591. |
[2] | 潘美琪, 贺兴. 基于零样本学习的风力机故障诊断方法[J]. 上海交通大学学报, 2025, 59(5): 561-568. |
[3] | 刘长玺, 齐国民, 王继成, 李天野, 杨健, 雷霞. 考虑碳排放权交易的两阶段电力现货市场模式设计[J]. 上海交通大学学报, 2025, 59(3): 342-353. |
[4] | 覃浩, 苏立伟, 伍广斌, 蒋崇颖, 徐智鹏, 康峰, 谭火超, 张勇军. 基于集成学习和卷积神经网络的电网客服短期话务量预测[J]. 上海交通大学学报, 2025, 59(2): 266-273. |
[5] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[6] | 颜铭萱1,苗雨桐2,3,盛淑茜1,甘小莺1,何 奔2,沈 兰2,3. 基于集成学习的急性心肌梗死死亡预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 153-165. |
[7] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[8] | 蒋伊琳1, 2, 李向1, 2, 张昊平3. 基于卷积神经网络和接收信号强度的波束状态感知方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[9] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[10] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[11] | 陈晖, 何耿生, 刘昱良, 曾红梅, 张世旭, 李姚旺. 考虑热力系统等效储能特性的低碳园区储能容量优化配置[J]. 上海交通大学学报, 2024, 58(6): 863-871. |
[12] | 卫志农, 杨立, 陈胜, 马骏超, 彭琰, 费有蝶. 计及短期运行灵活性的城市能源系统扩展规划[J]. 上海交通大学学报, 2024, 58(5): 659-668. |
[13] | 高锋阳, 宋志翔, 高建宁, 高翾宇, 杨凯文. 计及光伏和储能接入的牵引供电系统日前调度[J]. 上海交通大学学报, 2024, 58(5): 760-775. |
[14] | 程韧俐, 李江南, 周保荣, 赵文猛, 刘亚. 含碳捕集-电转气的风光火储一体化系统优化运行[J]. 上海交通大学学报, 2024, 58(5): 709-718. |
[15] | 孙毅, 谷家训, 郑顺林, 李熊, 陆春光, 刘炜. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||