上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (2): 266-273.doi: 10.16183/j.cnki.jsjtu.2023.383

• 新型电力系统与综合能源 • 上一篇    下一篇

基于集成学习和卷积神经网络的电网客服短期话务量预测

覃浩1,2, 苏立伟1, 伍广斌1, 蒋崇颖2, 徐智鹏2, 康峰1, 谭火超1, 张勇军2()   

  1. 1.广东电网有限责任公司客户服务中心,广州 510699
    2.华南理工大学 电力学院,广州 510640
  • 收稿日期:2023-08-08 修回日期:2023-09-28 接受日期:2023-11-07 出版日期:2025-02-28 发布日期:2025-03-11
  • 通讯作者: 张勇军,博士,教授;E-mail: zhangjun@scut.edu.cn.
  • 作者简介:覃 浩(1976—),硕士,高级工程师,研究方向为电力市场营销及客户服务、电力营销大数据、智能客服.
  • 基金资助:
    国家自然科学基金(52177085);中国南方电网有限责任公司科技项目(036800KK52220003)

Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN

QIN Hao1,2, SU Liwei1, WU Guangbin1, JIANG Chongying2, XU Zhipeng2, KANG Feng1, TAN Huochao1, ZHANG Yongjun2()   

  1. 1. Customer Service Center, Guangdong Power Grid Co., Ltd., Guangzhou 510699, China
    2. School of Electrical Power Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2023-08-08 Revised:2023-09-28 Accepted:2023-11-07 Online:2025-02-28 Published:2025-03-11

摘要:

现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进行异常数据识别,建立拉格朗日插值函数对异常数据或缺失数据进行修补;其次,利用层次分析法量化用户信息、气象信息和停电信息,采用灰色关联法分析话务量的影响因子,将影响因子作为话务量预测模型输入;然后,构建自适应增强(Adaboost)算法集成多个卷积神经网络(CNN)模型,提出一种Adaboost-CNN的话务量预测模型;最后,考虑供电服务系统增值服务,对预测结果进行修正,得到最终的话务量预测值.算例分析表明,所提预测模型较单一预测模型误差平均减少11.05个百分点、较组合预测模型误差平均减少5.32个百分点,具有更好的预测精度.

关键词: 现代供电服务体系, 话务量预测, Adaboost算法, 卷积神经网络, 孤立森林算法, 增值服务

Abstract:

The introduction of modern power supply service system has raised higher requirements for the service quality of electricity customer service. Accurate power supply service traffic prediction not only improves the quality of power customer service, but also effectively reduces the cost of customer service personnel. Therefore, this paper proposes a short-term traffic prediction method for power grid based on Adaboost and convolutional neural network (Adaboost-CNN) and a value-added service correction method. First, the isolated forest algorithm is used to identify the abnormal data, and the Lagrange interpolation function is applied to repair the abnormal data or missing data. Next, the analytic hierarchy process is employed to quantify user information, meteorological data, and power outage details. The grey correlation method is then used to analyze the influence factors of traffic volume, and these factors are incorporated as inputs to the traffic volume prediction model. An Adaboost algorithm is applied to integrate multiple CNN models, resulting in an Adaboost-CNN traffic prediction model. Finally, considering the value-added services within the power supply service system, the prediction results of the model are corrected to obtain the final traffic prediction value. The case analysis shows that the proposed forecasting model reduces prediction error by an average of 11.05 percentage points compared to a single forecasting model and by 5.32 percentage points compared to a combined forecasting model, demonstrating better forecasting accuracy.

Key words: modern power supply service system, traffic prediction, Adaboost, convolutional neural network (CNN), isolated forest algorithm, value-added services

中图分类号: