上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 923-937.doi: 10.16183/j.cnki.jsjtu.2023.403

• 新型电力系统与综合能源 • 上一篇    下一篇

基于带权重介数的综合能源系统脆弱环节防护优化模型

张辰微1,2, 王颖1,2(), 李亚平3, 张凯锋1,2   

  1. 1.东南大学 自动化学院,南京 210096
    2.东南大学 复杂工程系统测量与控制教育部重点实验室,南京 210096
    3.中国电力科学研究院有限公司南京分院,南京 210003
  • 收稿日期:2023-08-21 修回日期:2023-09-25 接受日期:2023-10-19 出版日期:2025-07-28 发布日期:2025-07-22
  • 通讯作者: 王颖 E-mail:wyseu@seu.edu.cn
  • 作者简介:张辰微(1999—),博士生,从事综合能源系统保护研究.
  • 基金资助:
    国家电网有限公司总部科技项目(SGJSNJ00KHJS2260146)

Optimization Model for Safeguarding Vulnerable Components in Integrated Energy Systems Based on Weighted Betweenness

ZHANG Chenwei1,2, WANG Ying1,2(), LI Yaping3, ZHANG Kaifeng1,2   

  1. 1. School of Automation, Southeast University, Nanjing 210096, China
    2. Key Laboratory of Measurement and Control of Complex Systems of Engineering of the Ministry of Education, Southeast University, Nanjing 210096, China
    3. China Electric Power Research Institute (Nanjing), Nanjing 210003, China
  • Received:2023-08-21 Revised:2023-09-25 Accepted:2023-10-19 Online:2025-07-28 Published:2025-07-22
  • Contact: WANG Ying E-mail:wyseu@seu.edu.cn

摘要:

利用复杂网络理论对综合能源系统的脆弱环节进行防护,对提高系统的持续供能能力,特别是在面临蓄意物理攻击和自然破坏时具有重要意义.为了对综合能源系统中的脆弱环节采取针对性预防措施,提出一种基于带权重介数的综合能源系统脆弱环节防护优化模型.该模型以系统受攻击和破坏后损失的带权重介数最小为优化目标,综合考虑建立备份节点、备份线路,以及增加节点物理防护、线路物理防护和新建线路5种防护手段,以满足防护需求、防护预算限制、新建线路类型和数量限制等约束条件,优化得到防护预算内的最优防护策略.为解决模型求解中涉及复杂的介数计算和非线性目标函数求解的问题,首先根据防护手段类型将模型转化为上下双层;其次利用局部线性化技术处理下层模型;最后提出“遗传-混合整数线性规划”算法求解模型,实现模型高精度、高效率求解.仿真结果表明:在相同攻击和破坏条件下,相对于没有任何防护策略的情况,系统在引入最优防护策略后,带权重介数损失减少45.37%;并且该策略在分配的防护预算内优于其他5种防护策略.

关键词: 防护优化模型, 带权重介数, 复杂网络理论, 综合能源系统

Abstract:

Utilizing the complex network theory to mitigate vulnerabilities mitigation in integrated energy systems is significant for enhancing the resilience of sustained energy supply, especially against deliberate physical attacks and natural disasters. To implement more precise preventive measures for vulnerable components in integrated energy systems, this paper proposes a weighted betweenness-based protection optimization model for safeguarding vulnerable segments. The model aims to minimize the weighted betweenness loss incurred post attacks and damages, while simultaneously considering strategies such as establishing backup nodes and backup lines, enhancing physical protection of nodes and lines, and adding new lines. These strategies are subject to constraints such as protection requirements, budget limitations, and constraints on the types and quantities of new lines. The model optimization provides the optimal protection strategies within the allocated budget. To address the complex betweenness computations and non-linear objective functions, the model is formulated as a bilevel structure based on the nature of protection measures first. Then, the lower-level model is solved using a local linearization technique, and a “genetic-mixed integer linear programming” algorithm is proposed for solving the model with high precision and efficiency. The simulation results demonstrate that under conditions of equivalent attack and damage, the system with the optimal protection strategy achieves reduction of 45.37% in weighted betweenness loss compared with that without protection. The optimal strategy outperforms the other five protection strategies considered within the allocated protection budget.

Key words: protection optimization model, weighted betweenness, complex network theory, integrated energy system

中图分类号: