上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 923-937.doi: 10.16183/j.cnki.jsjtu.2023.403
收稿日期:
2023-08-21
修回日期:
2023-09-25
接受日期:
2023-10-19
出版日期:
2025-07-28
发布日期:
2025-07-22
通讯作者:
王颖
E-mail:wyseu@seu.edu.cn
作者简介:
张辰微(1999—),博士生,从事综合能源系统保护研究.
基金资助:
ZHANG Chenwei1,2, WANG Ying1,2(), LI Yaping3, ZHANG Kaifeng1,2
Received:
2023-08-21
Revised:
2023-09-25
Accepted:
2023-10-19
Online:
2025-07-28
Published:
2025-07-22
Contact:
WANG Ying
E-mail:wyseu@seu.edu.cn
摘要:
利用复杂网络理论对综合能源系统的脆弱环节进行防护,对提高系统的持续供能能力,特别是在面临蓄意物理攻击和自然破坏时具有重要意义.为了对综合能源系统中的脆弱环节采取针对性预防措施,提出一种基于带权重介数的综合能源系统脆弱环节防护优化模型.该模型以系统受攻击和破坏后损失的带权重介数最小为优化目标,综合考虑建立备份节点、备份线路,以及增加节点物理防护、线路物理防护和新建线路5种防护手段,以满足防护需求、防护预算限制、新建线路类型和数量限制等约束条件,优化得到防护预算内的最优防护策略.为解决模型求解中涉及复杂的介数计算和非线性目标函数求解的问题,首先根据防护手段类型将模型转化为上下双层;其次利用局部线性化技术处理下层模型;最后提出“遗传-混合整数线性规划”算法求解模型,实现模型高精度、高效率求解.仿真结果表明:在相同攻击和破坏条件下,相对于没有任何防护策略的情况,系统在引入最优防护策略后,带权重介数损失减少45.37%;并且该策略在分配的防护预算内优于其他5种防护策略.
中图分类号:
张辰微, 王颖, 李亚平, 张凯锋. 基于带权重介数的综合能源系统脆弱环节防护优化模型[J]. 上海交通大学学报, 2025, 59(7): 923-937.
ZHANG Chenwei, WANG Ying, LI Yaping, ZHANG Kaifeng. Optimization Model for Safeguarding Vulnerable Components in Integrated Energy Systems Based on Weighted Betweenness[J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 923-937.
表5
综合能源系统的带权重线路介数
线路编号 | 带权重的线路介数 | 线路编号 | 带权重的线路介数 |
---|---|---|---|
16-17 | 55939 | 15-16 | 29458 |
16-21 | 44259 | 28-29 | 29357 |
21-22 | 40725 | 14-15 | 27935 |
16-19 | 37727 | 22-62 | 27570 |
2-3 | 36711 | 6-31 | 26892 |
17-27 | 35681 | 25-26 | 26834 |
4-5 | 34802 | 6-11 | 26281 |
5-6 | 34802 | 1-2 | 26130 |
26-28 | 34645 | 1-39 | 26130 |
26-27 | 33973 | 2-25 | 25051 |
10-11 | 32933 | 17-18 | 24622 |
[1] | ALHARBI R S, NATH S, FAIZAN O M, et al. Assessment of drought vulnerability through an integrated approach using AHP and geoinformatics in the Kangsabati River Basin[J]. Journal of King Saud University-Science, 2022, 34(8): 102332. |
[2] | CAO M S, SHAO C Z, HU B, et al. Reliability assessment of integrated energy systems considering emergency dispatch based on dynamic optimal energy flow[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 290-301. |
[3] | JIANG T, ZHANG R F, LI X, et al. Integrated energy system security region: Concepts, methods, and implementations[J]. Applied Energy, 2021, 283: 116124. |
[4] | SUN C H, ZHOU Z Y, ZENG X J, et al. A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data scenarios[J]. Applied Energy, 2022, 320: 119239. |
[5] | 闫妍, 刘晓, 庄新田. 基于复杂网络理论的供应链级联效应检测方法[J]. 上海交通大学学报, 2010, 44(3): 322-325. |
YAN Yan, LIU Xiao, ZHUANG Xintian. Cascading failure model and method of supply chain based on complex network[J]. Journal of Shanghai Jiao Tong University, 2010, 44(3): 322-325. | |
[6] | CAO M H, GUO J J, XIAO H, et al. Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system[J]. Reliability Engineering & System Safety, 2022, 222: 108443. |
[7] | CHANG L, WU Z G. Performance and reliability of electrical power grids under cascading failures[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(8): 1410-1419. |
[8] | CHEN G, DONG Z Y, HILL D J, et al. Attack structural vulnerability of power grids: A hybrid approach based on complex networks[J]. Physica A: Statistical Mechanics & Its Applications, 2010, 389(3): 595-603. |
[9] | DU R J, DONG G G, TIAN L X, et al. Targeted attack on networks coupled by connectivity and dependency links[J]. Physica A: Statistical Mechanics & Its Applications, 2016, 450: 687-699. |
[10] | 刘涤尘, 冀星沛, 王波, 等. 基于复杂网络理论的电力通信网拓扑脆弱性分析及对策[J]. 电网技术, 2015, 39(12): 3615-3621. |
LIU Dichen, JI Xingpei, WANG Bo, et al. Topological vulnerability analysis and countermeasures of electrical communication network based on complex network theory[J]. Power System Technology, 2015, 39(12): 3615-3621. | |
[11] |
SCHNEIDER C M, YAZDANI N, ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific Reports, 2013, 3: 1969.
doi: 10.1038/srep01969 pmid: 23752705 |
[12] | 崔文岩, 孟相如, 康巧燕, 等. 基于复合边权重的加权复杂网络级联抗毁性优化[J]. 系统工程与电子技术, 2017, 39(2): 355-361. |
CUI Wenyan, MENG Xiangru, KANG Qiaoyan, et al. Optimization of cascading invulnerability on weighted complex networks based on composite edge weight model[J]. Systems Engineering & Electronics, 2017, 39(2): 355-361. | |
[13] |
GONG M G, MA L J, CAI Q, et al. Enhancing robustness of coupled networks under targeted recoveries[J]. Scientific Reports, 2015, 5: 8439.
doi: 10.1038/srep08439 pmid: 25675980 |
[14] | 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6. |
GUO Mingjian, GAO Yan. Invulnerability analysis of power network based on complex network[J]. Complex Systems & Complexity Science, 2022, 19(4): 1-6. | |
[15] |
刘涛, 李伟华, 汤熠. 综合智慧能源系统典型构架网络安全防护研究[J]. 综合智慧能源, 2024, 46(5): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.05.010 |
LIU Tao, LI Weihua, TANG Yi. Research on network security protection of typical architecture of integrated smart energy system[J]. Integrated Intelligent Energy, 2024, 46(5): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.05.010 |
|
[16] | ZHANG L, SU H, ZIO E, et al. A data-driven approach to anomaly detection and vulnerability dynamic analysis for large-scale integrated energy systems[J]. Energy Conversion & Management, 2021, 234: 113926. |
[17] | YANG S H, CHEN W R, ZHANG X X, et al. A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures[J]. Reliability Engineering & System Safety, 2021, 207: 107354. |
[18] | XU B Y, HONG L C, GU D Y. Security analysis of integrated energy system under complex network[C]// 2022 IEEE 5th International Electrical and Energy Conference. Nangjing, China: IEEE, 2022: 3325-3329. |
[19] | ZHENG T, LIU G, CHENG W, et al. Identification of vulnerable links in integrated energy system based on complex network theory[C]// 2022 4th International Conference on Power and Energy Technology. Beijing, China: IEEE, 2022: 1157-1162. |
[20] | 戴婷婷, 刘俊勇, 魏震波, 等. 基于复杂网络理论的电力系统脆弱性分析[J]. 现代电力, 2010, 27(1): 56-60. |
DAI Tingting, LIU Junyong, WEI Zhenbo, et al. Analysis of power system vulnerability based on complex network theory[J]. Modern Electric Power, 2010, 27(1): 56-60. | |
[21] | 张国华, 张建华, 杨京燕, 等. 基于有向权重图和复杂网络理论的大型电力系统脆弱性评估[J]. 电力自动化设备, 2009, 29(4): 21-26. |
ZHANG Guohua, ZHANG Jianhua, YANG Jingyan, et al. Vulnerability assessment of bulk power grid based on weighted directional graph and complex network theory[J]. Electric Power Automation Equipment, 2009, 29(4): 21-26. | |
[22] | 丁一, 江艺宝, 宋永华, 等. 能源互联网风险评估研究综述(一): 物理层面[J]. 中国电机工程学报, 2016, 36(14): 3806-3817. |
DING Yi, JIANG Yibao, SONG Yonghua, et al. Review of risk assessment for energy Internet, part Ⅰ: Physical level[J]. Proceedings of the CSEE, 2016, 36(14): 3806-3817. | |
[23] | 潘华, 肖雨涵, 梁作放, 等. 基于复杂网络的电-气-热综合能源系统健壮性分析[J]. 电力自动化设备, 2019, 39(8): 104-112. |
PAN Hua, XIAO Yuhan, LIANG Zuofang, et al. Robustness analysis of electricity-gas-heat integrated energy system based on complex network[J]. Electric Power Automation Equipment, 2019, 39(8): 104-112. | |
[24] | SHEN Y C, GU C H, ZHAO P F. Structural vulnerability assessment of multi-energy system using a PageRank algorithm[J]. Energy Procedia, 2019, 158: 6466-6471. |
[25] | WANG B, WAN S H, ZHANG X J, et al. A novel index for assessing the robustness of integrated electrical network and a natural gas network[J]. IEEE Access, 2018, 6: 40400-40410. |
[26] | 张殷, 肖先勇, 李长松. 基于攻击者视角的电力信息物理融合系统脆弱性分析[J]. 电力自动化设备, 2018, 38(10): 81-88. |
ZHANG Yin, XIAO Xianyong, LI Changsong. Vulnerability analysis of cyber physical power system from attacker’s perspective[J]. Electric Power Automation Equipment, 2018, 38(10): 81-88. | |
[27] | 汪勋婷, 王波. 考虑信息物理融合的电网脆弱社团评估方法[J]. 电力自动化设备, 2017, 37(12): 43-51. |
WANG Xunting, WANG Bo. Assessment method of vulnerable communities in power grid considering cyber-physical integration[J]. Electric Power Automation Equipment, 2017, 37(12): 43-51. | |
[28] | 王梓行, 姜大立, 漆磊, 等. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85. |
WANG Zihang, JIANG Dali, QI Lei, et al. Complex network invulnerability and node importance evaluation model based on redundancy[J]. Complex Systems & Complexity Science, 2020, 17(3): 78-85. | |
[29] | VIJAYSHANKAR S, CHANG C Y, UTKARSH K, et al. Assessing the impact of cybersecurity attacks on energy systems[J]. Applied Energy, 2023, 345: 121297. |
[30] | 邹洋, 王剑晓, 戴璟, 等. 欧洲能源危机成因、影响与应对措施[J]. 电力系统自动化, 2023, 47(17): 1-13. |
ZOU Yang, WANG Jianxiao, DAI Jing, et al. Causes, impacts and mitigation measures of European energy crisis[J]. Automation of Electric Power Systems, 2023, 47(17): 1-13. | |
[31] | 尚学军, 霍现旭, 戚艳, 等. 考虑负荷需求响应的园区综合能源系统运行优化研究[J]. 电力与能源进展, 2020, 8(3): 57-69. |
SHANG Xuejun, HUO Xianxu, QI Yan, et al. Research on operation optimization of integrated energy system for park considering integrated demand response[J]. Advances in Energy & Power Engineering, 2020, 8(3): 57-69. |
[1] | 邓倩文, 李奇, 邱宜彬, 李豆萌, 霍莎莎, 陈维荣. 考虑多灵活性资源联合运行的综合能源系统优化配置方法[J]. 上海交通大学学报, 2025, 59(7): 912-922. |
[2] | 鲁斌, 王伊晓, 濮川苘, 陈云辉, 陈波波, 樊飞龙. 区域多主体综合能源系统电压偏差异步协调控制方法[J]. 上海交通大学学报, 2025, 59(6): 758-767. |
[3] | 高波, 李飞, 史轮, 陶鹏, 石振刚, 张超, 彭杰, 赵一伊. 基于实时碳强度评估的社区综合能源系统低碳互动管理策略[J]. 上海交通大学学报, 2025, 59(5): 580-591. |
[4] | 黄逸翔, 窦迅, 李林溪, 杨函煜, 于建成, 霍现旭. 基于全局灵敏度分析的综合能源设备响应价值量化方法[J]. 上海交通大学学报, 2025, 59(5): 569-579. |
[5] | 李建林, 张则栋, 梁策, 曾飞. 计及源-荷不确定性的综合能源系统多目标鲁棒优化调度[J]. 上海交通大学学报, 2025, 59(2): 175-185. |
[6] | 林森, 文书礼, 朱淼, 戴群, 鄢伦, 赵耀, 叶惠丽. 考虑碳交易机制的海港综合能源系统电-热混合储能优化配置[J]. 上海交通大学学报, 2024, 58(9): 1344-1356. |
[7] | 周思怡, 杨欢红, 黄文焘, 周泽, 焦伟, 杨镇瑜. 集装箱港口综合能源系统日前-日内两阶段滚动优化调度[J]. 上海交通大学学报, 2024, 58(9): 1357-1369. |
[8] | 李冰洁, 袁晓昀, 史静, 徐华池, 罗子萱. 综合能源系统电气热多能量流建模及优化[J]. 上海交通大学学报, 2024, 58(9): 1297-1308. |
[9] | 王金锋, 王琪, 任正某, 孙晓晨, 孙毅, 赵一伊. 基于联邦强化学习的电热综合能源系统能量管理策略[J]. 上海交通大学学报, 2024, 58(6): 904-915. |
[10] | 范宏, 邢梦晴, 王兰坤, 田书欣. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58(6): 881-892. |
[11] | 范宏, 杨忠权, 夏世威. 考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J]. 上海交通大学学报, 2024, 58(5): 624-635. |
[12] | 付文溪, 窦真兰, 张春雁, 王玲玲, 蒋传文, 熊展. 计及动态碳排放因子的多H2-IES双层优化运行方法[J]. 上海交通大学学报, 2024, 58(5): 610-623. |
[13] | 张程, 匡宇, 陈文兴, 郑杨. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681. |
[14] | 孙毅, 谷家训, 郑顺林, 李熊, 陆春光, 刘炜. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658. |
[15] | 刘炳文, 吴雄, 曹滨睿, 麻淞, 何雯雯. 基于增强型Benders分解的区域综合能源系统联合规划[J]. 上海交通大学学报, 2024, 58(10): 1513-1523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||