上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (7): 791-802.doi: 10.16183/j.cnki.jsjtu.2021.542
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
收稿日期:
2021-12-31
修回日期:
2022-01-24
接受日期:
2022-02-07
出版日期:
2023-07-28
发布日期:
2023-07-28
通讯作者:
胡炎
E-mail:yanhu@sjtu.edu.cn
作者简介:
李俊双(1988-),硕士,从事电力系统优化运行研究.
基金资助:
LI Junshuang, HU Yan(), TAI Nengling
Received:
2021-12-31
Revised:
2022-01-24
Accepted:
2022-02-07
Online:
2023-07-28
Published:
2023-07-28
Contact:
HU Yan
E-mail:yanhu@sjtu.edu.cn
摘要:
5G基站的电费成本已经成为阻碍5G通信技术发展的因素.通过盘活5G基站储能资源,以实现降低5G基站用电成本的目的.首先建立考虑通信负载的5G基站负荷模型和考虑5G基站对储能备用电量需求与配电网供电可靠性的5G基站储能容量可调度模型;提出了一种针对5G储能调度的充放电策略;建立了5G基站储能参与配电网协同优化调度的模型.通过不同方案对5G基站储能优化调度的经济性进行对比.算例分析结果表明,将5G基站闲置储能参与配电网统一优化调度,可在降低5G基站的用电成本的同时,缓解配电网供电压力,提高系统内新能源消纳率,实现通信运营商与电网之间的双赢.
中图分类号:
李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802.
LI Junshuang, HU Yan, TAI Nengling. Collaborative Optimization Scheduling of 5G Base Station Energy Storage and Distribution Network Considering Communication Load and Power Supply Reliability[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802.
[1] | 刘志坚. 深化全面互联网化运营转型助力5G万物互联新时代[J]. 信息通信技术, 2019, 13(3): 4-6. |
LIU Zhijian. Deepen the transformation of comprehensive Internet-based operations to help the new era of 5G Internet of Everything[J]. Information and Communication Technology, 2019, 13(3): 4-6. | |
[2] | 工业和信息化部. 2019年通信业统计公报[R]. 北京: 运行监测协调局, 2020. |
Ministry of Industry and Information Technology. 2019 statistical bulletin of communication[R]. Beijing: Operational Monitoring and Coordination Bureau, 2020. | |
[3] | 中国新闻网. 5G年度报告: 我国5G网络建设已进入高速增长期[EB/OL]. (2019-05-18)[2021-12-18]. https://www.chinanews.com.cn/cj/2021/05-18/9480174.shtml. |
China News. 5G Annual Report: China's 5G network construction has entered a high-speed growth period[EB/OL]. (2019-05-18)[2021-12-18]. https://www.chinanews.com.cn/cj/2021/05-18/9480174.shtml. | |
[4] | 李子龙, 柳仕宝, 周怡钊, 等. 5G时代电费管理技术难点与应对策略[J]. 信息通信, 2020(12): 238-241. |
LI Zilong, LIU Shibao, ZHOU Yizhao, et al. Technical difficulties and countermeasures of electricity tariff management in the 5G era[J]. Information and Communication, 2020(12): 238-241. | |
[5] | 搜狐新闻. 5G基站耗电惊人, 电费将成为压垮运营商的最后一根稻草?[EB/OL]. (2019-08-03)[2021-12-18]. https://www.sohu.com/a/331305502_100030976. |
Sohu News. 5G base stations consume a staggering amount of power, will the electricity bill become the last straw to break the operators? [EB/OL]. (2019-08-03)[2021-12-18]. https://www.sohu.com/a/331305502_100030976. | |
[6] | 孙妍. 用2%的能耗驱动20%的降耗[N]. IT时报, 2021-09-10(7). |
SUN Yan. 20% consumption reduction driven by 2% energy consumption[N]. IT Times, 2021-09-10(7). | |
[7] | 国家能源局. 支持售电企业将多个5G基站负荷聚集 “打捆”参与交易[EB/OL]. (2020-10-24)[2021-12-18]. https://www.sohu.com/a/427044865_99919439. |
National Energy Administration. Support electricity sales enterprises to gather multiple 5G base station load "bundling" to participate in the transaction[EB/OL]. (2020-10-24)[2021-12-18]. https://www.sohu.com/a/427044865_99919439. | |
[8] | 前瞻网. 2022年中国储能电池行业市场现状及发展前景分析: 5G基站备用电源储能需求将达78. 6 GWh[EB/OL]. (2021-10-26)[2021-12-18]. https://mp.ofweek.com/libattery/a856714352297. |
Foresight Net. Analysis of market status and development prospects of China's energy storage battery industry in 2022, The energy storage demand of standby power of 5G base stations will reach 78. 6 GWh[EB/OL]. (2021-10-26)[2021-12-18]. https://mp.ofweek.com/libattery/a856714352297. | |
[9] | FRENGER P, TANO R. More capacity and less power: How 5G NR can reduce network energy consumption[C]// IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur,Malaysia: IEEE, 2019: 1-5. |
[10] | 刘威, 刁兆坤, 范才坤, 等. 全行业多措并举走出降低5G能耗的新路[J]. 通信世界, 2020(25): 35-37. |
LIU Wei, DIAO Zhaokun, FAN Caikun, et al. The whole industry takes multiple measures to find a new way to reduce 5G energy consumption[J]. Communication World, 2020(25): 35-37. | |
[11] | 张维东. 5G基站节电综合措施[J]. 通讯世界, 2020, 27(4): 102-103. |
ZHANG Weidong. Comprehensive measures for power saving of 5G base stations[J]. Communication World, 2020, 27(4): 102-103. | |
[12] | 搜狐新闻. 中国铁塔和华为联合创新 5G Power为站点提出创新供电模式[EB/OL]. (2020-05-06)[2021-12-18]. https://www.sohu.com/a/362803479_168833. |
Sohu News. China Tower and Huawei jointly innovated 5G Power to propose an innovative power supply model for the station[EB/OL]. (2020-05-06)[2021-12-18]. https://www.sohu.com/a/362803479_168833. | |
[13] | 唐力, 刘继春. 不同零售合同模式下的售电公司多目标购售电决策建模[J]. 供用电, 2019, 36(2): 48-55. |
TANG Li, LIU Jichun. Multi-objective power purchase and sale decision modeling of retail power companies under different retail contract models[J]. Distribution & Utilization, 2019, 36(2): 48-55. | |
[14] | 李德智, 田世明, 王伟福, 等. 分布式储能的商业模式研究和经济性分析[J]. 供用电, 2019, 36(4): 86-91. |
LI Dezhi, TIAN Shiming, WANG Weifu, et al. Business model research and economic analysis of distributed energy storage[J]. Distribution & Utilization, 2019, 36(4): 86-91. | |
[15] | 刘军会, 郭璞, 李虎军, 等. 5G基站储能配置与需求响应可行性研究[J]. 河南电力, 2021 (Sup. 2): 20-23. |
LIU Junhui, GUO Pu, LI Hujun, et al. Feasibility study on 5G base station energy storage configuration and demand response[J]. Henan Electric Power, 2021 (Sup. 2): 20-23. | |
[16] | 刘战捷. 计及基站备用储能的电力系统经济调度[D]. 济南: 山东大学, 2018. |
LIU Zhanjie. Economic dispatching of power system including base station standby energy storage[D]. Jinan: Shangdong University, 2018. | |
[17] | 刘雨佳, 樊艳芳. 计及 5G 基站储能和技术节能措施的虚拟电厂调度优化策略[J]. 电力系统及其自动化学报, 2022, 34(1): 8-15. |
LIU Yujia, FAN Yanfang. Virtual power plant scheduling optimization strategy with 5G base station energy storage and technology energy-saving measures[J]. Journal of Electric Power Systems and Automation, 2022, 34(1): 8-15. | |
[18] | 岑海凤, 许苑, 王军伟, 等. 通信基站备用电池的云储能系统设计与应用[J]. 电源技术, 2020, 44(6): 902-904. |
CEN Haifeng, XU Yuan, WANG Junwei, et al. Design and application of cloud energy storage system for backup batteries in communication base stations[J]. Power Technology, 2020, 44(6): 902-904. | |
[19] | 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887. |
MA Xiufan, MENG Xiangyu, ZHU Qiuping, et al. Meter and communication load of 5G base station storage regulation strategy[J]. Journal of Electrotechnics, 2022, 37(11): 2878-2887. | |
[20] | 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应: 关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552. |
YONG Pei, ZHANG Ning, CI Song, et al. A new approach to 5G communication base station participation demand response: Key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552. | |
[21] | 吕婷, 曹亘, 张涛, 等. 5G基站架构及部署策略[J]. 移动通信, 2018, 42(11): 72-77. |
LV Ting, CAO Gen, ZHANG Tao, et al. 5G base station architecture and deployment strategy[J]. Mobile Communications, 2018, 42(11): 72-77. | |
[22] | 贾骏, 郭慧娟, 李杰强. 5G基站供电系统需求及供电技术探讨[J]. 通信电源技术, 2019, 36(4): 163-165. |
JIA Jun, GUO Huijuan, LI Jieqiang. Discussion on 5G base station power supply system requirements and power supply technology[J]. Communication Power Technology, 2019, 36(4): 163-165. | |
[23] | 帅农村, 邵泽才. 基于多元线性回归算法的5G基站能耗模型[J]. 移动通信, 2020, 44(5): 32-36. |
SHUAI Nongcun, SHAO Zecai. 5G base station energy consumption model based on multiple linear regression algorithm[J]. Mobile Communications, 2020, 44(5): 32-36. | |
[24] | 搜狐新闻. 5G 基站功耗, 到底有多可怕?[EB/OL]. (2019-08-15)[2021-12-18]. https://www.sohu.com/a/333977615_115128. |
Sohu News. How scary is 5G base station power consumption? [EB/OL]. (2019-08-15)[2021-12-18]. https://www.sohu.com/a/333977615_115128. | |
[25] | 中华人民共和国住房和城乡建设部. 通信电源设备安装工程设计规范: GB 51194-2016[S]. 北京: 中华人民共和国工业和信息化部, 2016. |
Ministry of Housing and Urban-Rural Development. Code for engineering design of communication power equipment installation: GB 51194-2016[S]. Beijing: Ministry of Industry and Information Technology, 2016. | |
[26] | BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Power Engineering Review, 1989, 9(4): 101-102. |
[1] | 叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚. 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024, 58(1): 30-39. |
[2] | 刘传斌, 矫文书, 吴秋伟, 陈健, 周前. 基于模型预测控制的风储联合电场参与电网二次调频策略[J]. 上海交通大学学报, 2024, 58(1): 91-101. |
[3] | 颜文婷, 杨隆, 李长城, 罗伟. 考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 上海交通大学学报, 2023, 57(9): 1165-1175. |
[4] | 奚鑫泽, 邢超, 覃日升, 何廷一, 和鹏, 孟贤, 程春辉. 含双馈风力发电系统的配电网短路电流特性[J]. 上海交通大学学报, 2023, 57(7): 921-927. |
[5] | 胡博, 程欣, 邵常政, 黄威, 孙悦, 谢开贵. 计及建筑热负荷弹性的综合能源系统调度方法[J]. 上海交通大学学报, 2023, 57(7): 803-813. |
[6] | 叶志亮, 黎灿兵, 张勇军, 李立浧, 肖银璟, 吴雨杭, 邰能灵. 含高比例气象敏感可再生能源电网日前调度时间颗粒度优化[J]. 上海交通大学学报, 2023, 57(7): 781-790. |
[7] | 韩正谦1,罗利文1,姚伟2,尹邵文2,陈伟2,王营辉2. 基于频谱感知的锂电池直流系统电弧故障检测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 630-637. |
[8] | 张蓬, 吕恭祥, 刘志杰, 朱守真, 邵智勇. 含电能路由器的配电网转供灵活性量化分析[J]. 上海交通大学学报, 2023, 57(5): 513-520. |
[9] | 黄远明, 张玉欣, 夏赞阳, 王浩浩, 吴明兴, 王宁, 陈青, 朱涛, 陈新宇. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报, 2023, 57(4): 432-441. |
[10] | 陈雨婷, 赵毅, 吴俊达, 孙文瑶, 夏世威. 考虑碳排放指标的配电网经济调度方法[J]. 上海交通大学学报, 2023, 57(4): 442-451. |
[11] | 王昊, 黄文焘, 邰能灵, 余墨多, 孙国亮. 直流配网多滤波器交互影响机理分析[J]. 上海交通大学学报, 2023, 57(4): 393-402. |
[12] | 范宏, 王兰坤, 邢梦晴, 田书欣, 于伟南. 考虑频率稳定约束的电-氢互补多楼宇协调优化调度[J]. 上海交通大学学报, 2023, 57(12): 1559-1570. |
[13] | 李迁, 姜欣, 张钧钊, 段世杰, 金阳. 规模化储能参与电力现货市场的商业模式[J]. 上海交通大学学报, 2023, 57(12): 1543-1558. |
[14] | 刘迪迪, 杨益菲, 杨玉荟, 邹艳丽, 王小华, 黎新. 随机环境下电动汽车充电实时管理与优化控制算法[J]. 上海交通大学学报, 2023, 57(1): 1-9. |
[15] | 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||