上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (7): 781-790.doi: 10.16183/j.cnki.jsjtu.2022.277
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
叶志亮1, 黎灿兵1(), 张勇军2, 李立浧2, 肖银璟1, 吴雨杭1, 邰能灵1
收稿日期:
2022-07-15
修回日期:
2022-09-07
接受日期:
2022-09-22
出版日期:
2023-07-28
发布日期:
2023-07-28
通讯作者:
黎灿兵
E-mail:licanbing@sjtu.edu.cn
作者简介:
叶志亮(1998-),硕士生,从事电力系统调度研究.
基金资助:
YE Zhiliang1, LI Canbing1(), ZHANG Yongjun2, LI Licheng2, XIAO Yinjing1, WU Yuhang1, TAI Nengling1
Received:
2022-07-15
Revised:
2022-09-07
Accepted:
2022-09-22
Online:
2023-07-28
Published:
2023-07-28
Contact:
LI Canbing
E-mail:licanbing@sjtu.edu.cn
摘要:
调度计划的时间颗粒度指调度计划中每个时段长度.随着气象敏感可再生能源占比的提高,调度时段内电网净负荷的波动性显著增强,造成系统爬坡能力不足、频率异常等风险.因此,不同可再生能源渗透率下时间颗粒度的设置成为当前迫切需要解决的问题.提出基于全局灵敏度的日前调度时间颗粒度优化方法,采用Sobol'方法和多项式混沌展开的全局灵敏度方法量化不同时间颗粒度下净负荷波动性、不确定性对优化调度影响,在精细化程度和负荷预测准确率之间取得一种平衡,选择合适的时间颗粒度使优化调度效果最优.分析和仿真结果表明:时间颗粒度的选择主要由净负荷波动率决定,依据净负荷波动率选择合适时间颗粒度,使得不平衡功率最小化,可达到提升优化调度效果和降低调度成本的目的.
中图分类号:
叶志亮, 黎灿兵, 张勇军, 李立浧, 肖银璟, 吴雨杭, 邰能灵. 含高比例气象敏感可再生能源电网日前调度时间颗粒度优化[J]. 上海交通大学学报, 2023, 57(7): 781-790.
YE Zhiliang, LI Canbing, ZHANG Yongjun, LI Licheng, XIAO Yinjing, WU Yuhang, TAI Nengling. Optimization of Day-Ahead Dispatch Time Resolution in Power System with a High Proportion of Climate-Sensitive Renewable Energy Sources[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 781-790.
表1
系统机组参数
机组 | am/[美元· (MW2·h)-1] | bm/[美元· (MW·h)-1] | cm/ [美元·h-1] | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 470 | 150 | 4.3×10-4 | 21.60 | 958.20 | 120 | -120 | 3000 | 3000 |
2 | 460 | 130 | 6.3×10-4 | 21.05 | 1313.60 | 120 | -120 | 3000 | 3000 |
3 | 340 | 73 | 5.9×10-4 | 20.81 | 604.97 | 120 | -120 | 2200 | 2200 |
4 | 300 | 60 | 7.0×10-4 | 22.90 | 471.60 | 100 | -100 | 1800 | 1800 |
5 | 243 | 73 | 7.9×10-4 | 21.62 | 480.29 | 100 | -100 | 900 | 900 |
6 | 160 | 57 | 5.6×10-4 | 17.87 | 601.75 | 100 | -100 | 900 | 900 |
7 | 130 | 20 | 2.1×10-3 | 16.51 | 502.70 | 50 | -50 | 260 | 260 |
8 | 120 | 47 | 4.8×10-3 | 23.23 | 639.40 | 50 | -50 | 260 | 260 |
9 | 80 | 20 | 10.9×10-1 | 19.58 | 455.60 | 50 | -50 | 30 | 30 |
10 | 55 | 20 | 9.5×10-3 | 22.54 | 629.40 | 50 | -50 | 30 | 30 |
[1] | 国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展和改革委员会能源研究所, 2015. |
Energy Research Institute of National Development and Reform Commission. China 2050 high percentage renewable energy development scenario and pathway study[R]. Beijing: Energy Research Institute of the National Development and Reform Commission, 2015. | |
[2] | PANDŽIĆ H, DVORKIN Y, WANG Y S, et al. Effect of time resolution on unit commitment decisions in systems with high wind penetration[C]// 2014 IEEE PES General Meeting | Conference & Exposition. National Harbor, MD, USA: IEEE, 2014: 1-5. |
[3] | 艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195. |
AI Xiaomeng, HAN Xingning, WEN Jinyu, et al. Robust unit commitment considering wind power ramp events[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 188-195. | |
[4] | MILLIGAN M, KIRBY B, et al. Combining balancing areas’ variability: Impacts on wind integration in the western interconnection. (2010-05-23)[2022-06-26]. https://www.osti.gov/biblio/986254. |
[5] | GUY J D. Security constrained unit commitment[J]. IEEE Transactions on Power Apparatus & Systems, 1971, 90(3): 1385-1390. |
[6] |
CONTAXIS G C, KABOURIS J. Short term scheduling in a wind/diesel autonomous energy system[J]. IEEE Transactions on Power Systems, 1991, 6(3): 1161-1167.
doi: 10.1109/59.119261 URL |
[7] | 陈之栩, 谢开, 张晶, 等. 电网安全节能发电日前调度优化模型及算法[J]. 电力系统自动化, 2009, 33(1): 10-13. |
CHEN Zhixu, XIE Kai, ZHANG Jing, et al. Optimal model and algorithm for day-ahead generation scheduling of transmission grid security constrained convention dispatch[J]. Automation of Electric Power Systems, 2009, 33(1): 10-13. | |
[8] |
GANGAMMANAVAR H, SEN S, ZAVALA V M. Stochastic optimization of sub-hourly economic dispatch with wind energy[J]. IEEE Transactions on Power Systems, 2016, 31(2): 949-959.
doi: 10.1109/TPWRS.2015.2410301 URL |
[9] |
CHE L, LIU X, ZHU X, et al. Intra-interval security assessment in power systems with high wind penetration[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1890-1903.
doi: 10.1109/TSTE.5165391 URL |
[10] |
CHE L, LIU X, ZHU X, et al. Intra-interval security based dispatch for power systems with high wind penetration[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1243-1255.
doi: 10.1109/TPWRS.2018.2870667 URL |
[11] |
SIOSHANSI R, O’NEILL R, OREN S S. Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets[J]. IEEE Transactions on Power Systems, 2008, 23(2): 344-352.
doi: 10.1109/TPWRS.2008.919246 URL |
[12] |
MORALES-ESPAÑA G, RAMÍREZ-ELIZONDO L, HOBBS B F. Hidden power system inflexibilities imposed by traditional unit commitment formulations[J]. Applied Energy, 2017, 191: 223-238.
doi: 10.1016/j.apenergy.2017.01.089 URL |
[13] |
BAKIRTZIS E A, BISKAS P N, LABRIDIS D P, et al. Multiple time resolution unit commitment for short-term operations scheduling under high renewable penetration[J]. IEEE Transactions on Power Systems, 2014, 29(1): 149-159.
doi: 10.1109/TPWRS.2013.2278215 URL |
[14] |
BAKIRTZIS E A, SIMOGLOU C K, BISKAS P N, et al. Comparison of advanced power system operations models for large-scale renewable integration[J]. Electric Power Systems Research, 2015, 128: 90-99.
doi: 10.1016/j.epsr.2015.06.025 URL |
[15] | BAKIRTZIS E A, BISKAS P N. Multiple time resolution stochastic scheduling for systems with high renewable penetration[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1030-1040. |
[16] |
ELA E, O’MALLEY M. Studying the variability and uncertainty impacts of variable generation at multiple timescales[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1324-1333.
doi: 10.1109/TPWRS.2012.2185816 URL |
[17] | WAN Y H. Analysis of wind power ramping behavior in ERCOT[R]. USA: Office of Scientific and Technical Information, 2011. |
[18] | 梁双, 胡学浩, 张东霞, 等. 光伏发电置信容量的研究现状与发展趋势[J]. 电力系统自动化, 2011, 35(19): 101-107. |
LIANG Shuang, HU Xuehao, ZHANG Dongxia, et al. Current status and development trend on capacity credit of photovoltaic generation[J]. Automation of Electric Power Systems, 2011, 35(19): 101-107. | |
[19] | 邬超, 朱桂萍, 钱敏慧. 基于信息熵的历史数据选取对超短期风电功率预测精度影响研究[J]. 电网技术, 2021, 45(5): 1767-1772. |
WU Chao, ZHU Guiping, QIAN Minhui. Impact of historical data selection on accuracy of ultra-short-term wind power prediction based on prediction information entropy[J]. Power System Technology, 2021, 45(5): 1767-1772. | |
[20] |
PINEDA S, FERNÁNDEZ-BLANCO R, MORALES J M. Time-adaptive unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3869-3878.
doi: 10.1109/TPWRS.59 URL |
[21] | 金国彬, 潘狄, 陈庆, 等. 考虑自适应实时调度的多电压等级直流配电网能量优化方法[J]. 电网技术, 2021, 45(10): 3906-3917. |
JIN Guobin, PAN Di, CHEN Qing, et al. Energy optimization method of multi-voltage-level DC distribution network considering adaptive real-time scheduling[J]. Power System Technology, 2021, 45(10): 3906-3917. | |
[22] | AGENCY I E. Empowering variable renewables-options for flexible electricity systems[M]. Paris: OECD Publishing, 2009: 13-14. |
[23] | 楚成博. 含可调控负荷系统的调度灵活性研究[D]. 济南: 山东大学, 2013. |
CHU Chengbo. Studies on flexibility of power system dispatch with controllable loads[D]. Jinan: Shandong University, 2013. | |
[24] |
NI F, NIJHUIS M, NGUYEN P H, et al. Variance-based global sensitivity analysis for power systems[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1670-1682.
doi: 10.1109/TPWRS.2017.2719046 URL |
[25] | 孙鑫, 王博, 陈金富, 等. 基于稀疏多项式混沌展开的可用输电能力不确定性量化分析[J]. 中国电机工程学报, 2019, 39(10): 2904-2914. |
SUN Xin, WANG Bo, CHEN Jinfu, et al. Sparse polynomial chaos expansion based uncertainty quantification for available transfer capability[J]. Proceedings of the CSEE, 2019, 39(10): 2904-2914. | |
[26] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948. |
[27] | 王皓, 艾芊, 甘霖, 等. 基于多场景随机规划和MPC的冷热电联合系统协同优化[J]. 电力系统自动化, 2018, 42(13): 51-58. |
WANG Hao, AI Qian, GAN Lin, et al. Collaborative optimization of combined cooling heating and power system based on multi-scenario stochastic programming and model predictive control[J]. Automation of Electric Power Systems, 2018, 42(13): 51-58. |
[1] | 叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚. 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024, 58(1): 30-39. |
[2] | 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802. |
[3] | 黄远明, 张玉欣, 夏赞阳, 王浩浩, 吴明兴, 王宁, 陈青, 朱涛, 陈新宇. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报, 2023, 57(4): 432-441. |
[4] | 刘迪迪, 杨益菲, 杨玉荟, 邹艳丽, 王小华, 黎新. 随机环境下电动汽车充电实时管理与优化控制算法[J]. 上海交通大学学报, 2023, 57(1): 1-9. |
[5] | 方晓涛, 严正, 王晗, 徐潇源, 陈玥. 考虑概率电压不平衡度越限风险的共享储能优化运行方法[J]. 上海交通大学学报, 2022, 56(7): 827-839. |
[6] | 张硕, 李薇, 李英姿, 刘强, 曾鸣. 面向新型电力系统的可再生能源绿色电力证书差异化配置模型[J]. 上海交通大学学报, 2022, 56(12): 1561-1571. |
[7] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
[8] | 孙欣, 严佳嘉, 谢敬东, 孙波. “碳中和”目标下电气互联系统有功-无功协同优化模型[J]. 上海交通大学学报, 2021, 55(12): 1554-1566. |
[9] | 张立波1,程浩忠1,曾平良2,张沈习1,周勤勇2. 基于Johnson分布体系的发输电系统可靠性评估[J]. 上海交通大学学报(自然版), 2017, 51(5): 555-. |
[10] | 赵明华,蒋祖华. 针对异常的船体曲面分段作业计划自动调整算法[J]. 上海交通大学学报(自然版), 2010, 44(03): 428-0432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||