上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (1): 66-75.doi: 10.16183/j.cnki.jsjtu.2021.255
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2021-07-14
修回日期:
2021-09-02
出版日期:
2023-01-28
发布日期:
2023-01-13
通讯作者:
徐震原
E-mail:xuzhy@sjtu.edu.cn.
作者简介:
于 杰(1996-),硕士生,现主要从事太阳能海水淡化研究.
基金资助:
Received:
2021-07-14
Revised:
2021-09-02
Online:
2023-01-28
Published:
2023-01-13
Contact:
XU Zhenyuan
E-mail:xuzhy@sjtu.edu.cn.
摘要:
零液体排放是高浓度盐水/废水处理的有效途径,其中非接触式太阳能蒸发是一种近年被提出的全新思路,兼具太阳能利用、结构简单、被动运行和不结垢的优势.针对非接触式太阳能蒸发缺乏有效预测模型用以指导实际装置优化的问题,首次构建了非接触式太阳能蒸发的稳态热阻网络模型,并对其蒸发性能进行了分析.结果显示,作为水体能量来源的辐射传热与空气层传热分别占比54.2%和45.8%,均对蒸发性能有重要影响.空气层厚度增加会对两种传热产生不利影响,10 mm 空气层厚度下的蒸发率仅为4 mm空气层厚度下蒸发率的70%.此外,减小蒸汽扩散阻力是提升蒸发率的有效途径,当蒸汽扩散系数从5×10-6 m2/s增大至2.5×10-5 m2/s时,蒸发率提升了2倍.
中图分类号:
于杰, 徐震原. 非接触式太阳能蒸发的模拟与分析[J]. 上海交通大学学报, 2023, 57(1): 66-75.
YU Jie, XU Zhenyuan. Simulation and Analysis of Contactless Solar Evaporation[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 66-75.
表2
等效热阻网络模型中物理量、组件含义及计算方法
组件名称 | 含义 | 计算方法 | 组件名称 | 含义 | 计算方法 |
---|---|---|---|---|---|
R1 | 顶部非辐射热损失热阻 | COMSOL软件模拟拟合计算 | Tamb | 环境温度 | 固定值25 ℃ |
R2 | 吸收-发射器导热热阻 | R2= | C1 | 吸收-发射器热容 | C1=c1m1 |
R3 | 垫片导热热阻 | R3= | 水蒸发模块 | 模拟水蒸发过程 | 自定义编程 |
R4 | 发射器-水体辐射传热热阻 | Qrad=FσAw( | 模拟控制器1 | 模拟太阳能输入信号 | 固定值1 000 W/m2 |
R5 | 空气层导热热阻 | R5= | 模拟控制器2 | 顶部热阻辅助热源信号 | 固定值-98.796 W/m2 |
R6 | 底部水体及水箱热损失热阻 | COMSOL软件模拟拟合计算 | Qabs1 | 模拟太阳能热源 | 固定值1 000 W/m2 |
Te | 吸收-发射器温度 | 待求解量 | Qabs2 | 顶部热阻辅助热源 | 固定值-98.796 W/m2 |
Tw | 表层水温度 | 待求解量 | 求解器 | 常微分方程求解器 | Simulink内置ode23t算法 |
[1] |
TONG T Z, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855.
doi: 10.1021/acs.est.6b01000 URL |
[2] |
YAQUB M, LEE W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review[J]. Science of the Total Environment, 2019, 681: 551-563.
doi: 10.1016/j.scitotenv.2019.05.062 URL |
[3] |
ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
doi: 10.1126/science.1200488 pmid: 21817042 |
[4] |
LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728.
doi: 10.1016/j.desal.2020.114728 URL |
[5] |
QASIM M, BADRELZAMAN M, DARWISH N N, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459: 59-104.
doi: 10.1016/j.desal.2019.02.008 |
[6] |
KIM J, PARK K, YANG D R, et al. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants[J]. Applied Energy, 2019, 254: 113652.
doi: 10.1016/j.apenergy.2019.113652 URL |
[7] |
PINTO F S, MARQUES R C. Desalination projects economic feasibility: A standardization of cost determinants[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 904-915.
doi: 10.1016/j.rser.2017.05.024 URL |
[8] |
GUDE V G. Desalination and sustainability—An appraisal and current perspective[J]. Water Research, 2016, 89: 87-106.
doi: 10.1016/j.watres.2015.11.012 URL |
[9] |
ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8): 634-641.
doi: 10.1038/s41565-018-0203-2 pmid: 30082804 |
[10] | 熊日华, 王世昌. 海水淡化中的替代型能源[J]. 化工进展, 2003, 22(11): 1139-1142. |
XIONG Rihua, WANG Shichang. Alternative energies in seawater desalination[J]. Chemical Industry and Engineering Progress, 2003, 22(11): 1139-1142. | |
[11] |
TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7 URL |
[12] |
LI C N, GOSWAMI Y, STEFANAKOS E. Solar assisted sea water desalination: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 136-163.
doi: 10.1016/j.rser.2012.04.059 URL |
[13] |
SHI Y, ZHANG C L, LI R Y, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830.
doi: 10.1021/acs.est.8b03300 URL |
[14] |
GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449.
doi: 10.1038/ncomms5449 pmid: 25043613 |
[15] |
LI T T, FANG Q L, XI X F, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593.
doi: 10.1039/C8TA08829B URL |
[16] | STORER D P, PHELPS J L, WU X, et al. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15279-15287. |
[17] |
WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239.
doi: 10.1002/smll.201401071 pmid: 24821378 |
[18] | ZHOU L, TAN Y L, JI D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227. |
[19] |
ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.
doi: 10.1038/nphoton.2016.75 URL |
[20] |
SHI Y, LI R Y, JIN Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013 URL |
[21] |
JIA C, LI Y J, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599.
doi: 10.1016/j.joule.2017.09.011 URL |
[22] |
LIU H, CHEN C J, CHEN G, et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design[J]. Advanced Energy Materials, 2018, 8(8): 1701616.
doi: 10.1002/aenm.201701616 URL |
[23] |
LI X Q, LI J L, LU J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338.
doi: 10.1016/j.joule.2018.04.004 URL |
[24] | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. |
[25] | XIA Y, HOU Q F, JUBAER H, et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy & Environmental Science, 2019, 12(6): 1840-1847. |
[26] |
FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709.
doi: 10.1021/acs.est.7b03040 URL |
[27] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
[28] | KUANG Y D, CHEN C J, HE S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): 1900498. |
[29] | ZHU L, SUN L, ZHANG H, et al. A solution to break the salt barrier for high-rate sustainable solar desalination[J]. Energy & Environmental Science, 2021, 14(4): 2451-2459. |
[30] | XU N, LI J L, WANG Y, et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science Advances, 2019, 5(7): eaaw7013. |
[31] |
WU L, DONG Z C, CAI Z R, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications, 2020, 11: 521.
doi: 10.1038/s41467-020-14366-1 pmid: 31988314 |
[32] |
COOPER T A, ZANDAVI S H, NI G W, et al. Contactless steam generation and superheating under one sun illumination[J]. Nature Communications, 2018, 9: 5086.
doi: 10.1038/s41467-018-07494-2 pmid: 30538234 |
[33] |
MENON A K, HAECHLER I, KAUR S, et al. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nature Sustainability, 2020, 3(2): 144-151.
doi: 10.1038/s41893-019-0445-5 URL |
[34] |
HALE G M, QUERRY M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 1973, 12(3): 555-563.
doi: 10.1364/AO.12.000555 URL |
[35] |
ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4 URL |
[36] | CENGEL Y A, KLEIN S, BECKMAN W. Heat transfer: A practical approach[M]. Boston: WBC McGraw-Hill, 1998. |
[1] | 李金平, 董玉慧, 李彩军, 代静波, 牛轶男, NOVAKOVIC Vojislav. 寒冷地区空气源热泵辅助太阳能热水器供暖性能[J]. 上海交通大学学报, 2023, 57(7): 910-920. |
[2] | 廖屹峰, 李伟鹏. 黏合物质与压缩变形对燃料电池气体扩散层孔隙结构和气体渗透特性的影响[J]. 上海交通大学学报, 2023, 57(7): 899-909. |
[3] | 冯雨欣, 张冬冬, 厉小润. 基于区域融合的小目标图像盲复原方法[J]. 空天防御, 2023, 6(4): 64-73. |
[4] | 沈文忠. 什么将是地球上最便宜的能源?[J]. 上海交通大学学报, 2021, 55(Sup.1): 86-87. |
[5] | 田益, 马向超, 蒋佳丽. 柴油燃烧烟尘干扰的红外辐射特性研究[J]. 空天防御, 2021, 4(4): 80-86. |
[6] | 王克帆, 邱潇颀, 高长生, 荆武兴. 临近空间太阳能无人机横航向变质心控制技术[J]. 空天防御, 2021, 4(4): 29-36. |
[7] | 王泽坤, 张福曦. 3D电子封装锡晶须建模与实验验证[J]. 上海交通大学学报, 2021, 55(11): 1445-1452. |
[8] | 赵炜, 赵钱, 黄江流, 侯振乾, 杜泽弘. 临近空间太阳能无人机在现代战争中的应用[J]. 空天防御, 2020, 3(2): 85-90. |
[9] | 何玉松,白敏丽,郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064. |
[10] | 杨宇丹,朱炳杰,郭正,杨希祥. 太阳能无人机能源系统参数的敏度分析[J]. 上海交通大学学报, 2020, 54(10): 1045-1052. |
[11] | 许明, 余昕, 倪敬. 液滴在类刀-工-屑狭缝中的动态润湿特性[J]. 上海交通大学学报, 2019, 53(5): 633-638. |
[12] | 张东,张建军,张跃智,李金平,王林军. 平板型双流道太阳能空气集热器扰流板结构优化[J]. 上海交通大学学报, 2019, 53(11): 1302-1307. |
[13] | 邹鑫尧,高展,黄震,朱磊. 主碳链长度对脂肪酸甲酯扩散火焰碳烟生成及其演变规律的影响[J]. 上海交通大学学报, 2019, 53(11): 1276-1284. |
[14] | 陶平1,2,王艳飞3,巩建鸣1,2,吴炜杰1,2,梁涛1,2. 氢在双相不锈钢中的扩散模拟[J]. 上海交通大学学报(自然版), 2018, 52(9): 1086-1091. |
[15] | 陈欣, 李东芳. 海上直升机甲板降低烟气扩散影响的工程优化措施分析[J]. 海洋工程装备与技术, 2018, 5(6): 380-383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||