上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (1): 55-65.doi: 10.16183/j.cnki.jsjtu.2021.222
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2021-06-23
修回日期:
2021-07-23
出版日期:
2023-01-28
发布日期:
2023-01-13
通讯作者:
周文武
E-mail:zhouww@sjtu.edu.cn.
作者简介:
张天伦(1999-),本科生,主要研究涡轮叶片上的颗粒物沉积效应.
基金资助:
ZHANG Tianlun, WANG Kechen, ZHANG Xu, ZHOU Wenwu()
Received:
2021-06-23
Revised:
2021-07-23
Online:
2023-01-28
Published:
2023-01-13
Contact:
ZHOU Wenwu
E-mail:zhouww@sjtu.edu.cn.
摘要:
曲面冲击换热在飞机机翼前缘防除冰上有着广泛应用.为了进一步提高翼型前缘防除冰性能,采用数值模拟依次探索了不同翅片阵列在平板和曲面上的冲击换热特性.平板模型的翅片阵列包含8片、12片直翅片以及12片弯翅片3种结构;曲面模型包括8片短翅片和8片长翅片两种阵列结构.仿真结果表明:在平板和翼型曲面上添加翅片阵列可以显著提高模型在不同雷诺数下的射流冲击换热性能;与无翅片相比,翼面上的换热效果整体提升高达4%~10%,其中在驻点位置处的强化换热效果最为明显.深入分析发现,引入的翅片阵列一方面增大了强化换热面积,同时也改变了冲击射流流动结构,从而增强了射流冲击换热的效果.
中图分类号:
张天伦, 王克辰, 张栩, 周文武. 翅片阵列对翼面的冲击换热影响数值模拟研究[J]. 上海交通大学学报, 2023, 57(1): 55-65.
ZHANG Tianlun, WANG Kechen, ZHANG Xu, ZHOU Wenwu. Numerical Simulation Study on Effect of Fin Array on Impingement Heat Transfer Performance of Airfoil Surface[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 55-65.
[1] | PETTY K R, FLOYD C D J. A statistical review of aviation airframe icing accidents in the US[J]. Conference on Aviation, Range, and Aerospace Meteorology, 2004: 623-628. |
[2] |
JAMBUNATHAN K, LAI E, MOSS M A, et al. A review of heat transfer aata for single circular jet impingement[J]. International Journal of Heat and Fluid Flow, 1992, 13(2): 106-115.
doi: 10.1016/0142-727X(92)90017-4 URL |
[3] |
LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat and Mass Transfer, 1994, 37(12): 1687-1697.
doi: 10.1016/0017-9310(94)90059-0 URL |
[4] |
NARAYANAN V, SEYED-YAGOOBI J, PAGE R H. An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(8/9): 1827-1845.
doi: 10.1016/j.ijheatmasstransfer.2003.10.029 URL |
[5] |
LOUREIRO J B R, SILVA FREIRE A P. Velocity and temperature profiles, wall shear stress and heat transfer coefficient of turbulent impinging jets[J]. International Journal of Heat and Mass Transfer, 2017, 107: 846-861.
doi: 10.1016/j.ijheatmasstransfer.2016.10.105 URL |
[6] |
SIDDIQUE M U, SYED A, KHAN S A, et al. On numerical investigation of heat transfer augmentation of flat target surface under impingement of steady air jet for varying heat flux boundary condition[J]. Journal of Thermal Analysis and Calorimetry, 2021, 147: 4325-4337.
doi: 10.1007/s10973-021-10785-4 URL |
[7] |
GAU C, LEE I C. Flow and impingement cooling heat transfer along triangular rib-roughened walls[J]. International Journal of Heat and Mass Transfer, 2000, 43(24): 4405-4418.
doi: 10.1016/S0017-9310(00)00064-8 URL |
[8] |
DOBBERTEAN M M, RAHMAN M M. Numerical analysis of steady state heat transfer for jet impingement on patterned surfaces[J]. Applied Thermal Engineering, 2016, 103: 481-490.
doi: 10.1016/j.applthermaleng.2016.04.070 URL |
[9] | DOBBERTEAN M M. Steady and transient heat transfer for jet impingement on patterned surfaces[D]. Florida, USA: University of South Florida, 2011. |
[10] |
GUO D, WEI J J, ZHANG Y H. Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces[J]. Applied Thermal Engineering, 2011, 31(11/12): 2042-2051.
doi: 10.1016/j.applthermaleng.2011.03.017 URL |
[11] |
HADIPOUR A, ZARGARABADI M R, DEHGHAN M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(7): 943-951.
doi: 10.1007/s10973-019-09232-2 URL |
[12] |
SONGKRAN W, PAISARN N. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications[J]. International Journal of Heat and Mass Transfer, 2019, 140: 281-292.
doi: 10.1016/j.ijheatmasstransfer.2019.06.020 URL |
[13] |
XING Y, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307.
doi: 10.1016/j.ijthermalsci.2010.11.008 URL |
[14] | ZHANG Y S, CHEN W. Experimental study on jet impingement boiling heat transfer in brass beads packed porous layer[J]. Journal of Thermal Science, 2020, 29(3): 208-219. |
[15] |
SINGH A. Numerical investigation on location of protrusions and dimples during slot jet impingement on a concave surface using hybrid ANN-GA[J]. Heat Transfer, 2020, 50(2): 1171-1197.
doi: 10.1002/htj.21922 URL |
[16] |
SINGH A, BALAJI C, PRASAD B. Numerical simulations and optimization of impinging jet configuration[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31(1): 1-25.
doi: 10.1108/HFF-01-2020-0053 URL |
[17] |
GAU C, CHUNG C M. Surface curvature effect on slot air-jet impingement cooling flow and heat transfer process[J]. Journal of Heat Transfer, 1991, 113(4): 858-864.
doi: 10.1115/1.2911214 URL |
[18] |
LYU Y, ZHANG J, LIU X, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285.
doi: 10.1016/j.cja.2019.07.002 URL |
[19] | 刘锡晨, 吕元伟, 张靖周. 半圆柱形凹靶面单排射流冲击换热实验研究[J]. 南京航空航天大学学报, 2020, 52(5): 808-816. |
LIU Xichen, LV Yuanwei, ZHANG Jingzhou. Experimental investigation of singlerow jet impingement heat transfer on semicylindrical concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2020, 52(5): 808-816. | |
[20] |
HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system[J]. Journal of Aircraft, 2014, 51(1): 104-116.
doi: 10.2514/1.C032078 URL |
[21] | 张靖周, 关涛, 单勇. 笛形管结构参数对热气防冰凹腔表面温度分布的影响[J]. 南京航空航天大学学报, 2017, 49(5): 83-89. |
ZHANG Jingzhou, GUAN Tao, SHAN Yong. Influence of piccolo parameters on temperature distribution on hot-air anti-icing concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2017, 49(5): 83-89. | |
[22] | 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 81-90. |
GUO Zhiqiang, ZHENG Mei, DONG Wei, et al. Influence of surface convex on heat transfer enhancement of wing hot air antic-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 81-90. | |
[23] | 归晓烨. 槽道强化换热在飞机机翼热气防冰系统中的应用[J]. 科技视界, 2017(8): 32-32. |
GUI Xiaoye. Application of channel enhanced heat exchange in airplane wing hot air anti-icing system[J]. Science &Technology Vision, 2017(8): 32-32. | |
[24] |
SEYEDEIN S H, HASAN M, MUJUMDAR A S. Modelling of a single confined turbulent slot jet impingement using various k-ε turbulence models[J]. Applied Mathematical Modelling, 1994, 18(10): 526-537.
doi: 10.1016/0307-904X(94)90138-4 URL |
[25] |
WANG S J, MUJUMDAR A S. A comparative study of five low Reynolds number k-ε models for impingement heat transfer[J]. Applied Thermal Engineering, 2005, 25(1): 31-44.
doi: 10.1016/j.applthermaleng.2004.06.001 URL |
[26] | GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer[J]. Journal of Heat Transfer, 1995, 117(4): 421-430. |
[27] | SAN J Y, HUANG C H, SHU M H. Impingement cooling of a confined circular air jet[J]. International Journal of Heat & Mass Transfer, 1997, 40(6): 1355-1364. |
[1] | 沙丽丽,巨永林,张华. 在磁场作用下Fe3O4/Water纳米流体湍流对流换热实验研究[J]. 上海交通大学学报(自然版), 2019, 53(2): 134-139. |
[2] | 刘振华, 杨雪飞. 纳米流体在回路型重力热管中的沸腾传热特性[J]. 上海交通大学学报(自然版), 2011, 45(06): 890-894. |
[3] | 宋斌,廖亮,刘振华. 减阻流体添加碳纳米管后的流动换热特性 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1332-1336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||