上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (1): 45-54.doi: 10.16183/j.cnki.jsjtu.2021.239
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
收稿日期:
2021-07-06
修回日期:
2021-09-27
出版日期:
2023-01-28
发布日期:
2023-01-13
作者简介:
谷 波(1964-),教授,博士生导师,研究方向为制冷空调系统数字化设计与模型分析.电话(Tel.):021-34206260;E-mail:基金资助:
GU Bo1(), DU Zhongxing1, ZENG Weijie1, TIAN Zhen2, ZHANG Zhiting1
Received:
2021-07-06
Revised:
2021-09-27
Online:
2023-01-28
Published:
2023-01-13
摘要:
建立了适用于大范围几何参数和流动参数的R32制冷剂管内流动沸腾传热和摩擦压降计算关联式.从公开文献中收集了R32传热和摩擦压降的数据源构建两个组合数据库.其中,传热数据库由来自8个文献的1 489个数据点组成,涵盖的水力直径为1~6.3 mm,压降数据库由来自8个文献的496个数据点组成,涵盖水力直径范围为0.643~6 mm.以上述数据库为基础,利用无量纲参数分析预测法并考虑参数主导作用,建立了新的传热系数关联式和摩擦压降关联式.此外,利用现有的关联式对新关联式进行评估.结果表明,现有的几个关联式均具有较大的平均绝对误差(MAE)和最大绝对误差(MAX).而新的传热系数计算关联式具有良好的预测精度,其MAE为14.59%,有90.85%的数据点在±30%误差带以内;新的压降关联式预测精度高,其MAE为17.86%.总之,上述两个新关联式都具有较广的应用范围和良好的预测精度,非常适用于分析工质为R32的换热器的传热和压降性能.
中图分类号:
谷波, 杜仲星, 曾炜杰, 田镇, 张智铤. R32管内流动沸腾传热系数关联式和摩擦压降关联式[J]. 上海交通大学学报, 2023, 57(1): 45-54.
GU Bo, DU Zhongxing, ZENG Weijie, TIAN Zhen, ZHANG Zhiting. Flow Boiling Heat Transfer Coefficient and Frictional Pressure Drop Correlations for R32[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 45-54.
表1
R32流动沸腾传热数据库
作者 (年份) | 管材 | 几何参数 | 工况参数 | n | |||
---|---|---|---|---|---|---|---|
Dh/mm | Tsat/℃ | G/(kg·m-2·s-1) | q/(kW·m-2) | x | |||
Li 等[ | 不锈钢 | 2 | 15 | 100~400 | 6~24 | 0.2~1 | 93 |
Wu 等 [ | 不锈钢 | 2 | 15 | 100~400 | 10 | 0.1~0.98 | 18 |
Longo 等[ | — | 4 | 5~20 | 200~800 | 12~51 | 0.06~0.90 | 117 |
Matsuse 等[ | 铜 | 1 | 10 | 30~400 | 2~24 | 0.05~1 | 273 |
Jige 等[ | 铜 | 1.0, 2.16, 3.48 | 15 | 50~600 | 5~40 | 0~1 | 702 |
He 等[ | 铜 | 4.3, 6.3 | 11 | 100~250 | 3~8 | 0~1 | 38 |
Lillo 等[ | 不锈钢 | 6 | 24.6~40.6 | 146~507 | 2.4~41.2 | 0.02~0.99 | 248 |
总计 | 1~6.3 | 5~40.6 | 30~800 | 2~51 | 0~1 | 1 489 |
表2
R32流动沸腾/绝热压降数据库
作者(年份) | 管材 | 几何参数 | 工况参数 | n | ||||
---|---|---|---|---|---|---|---|---|
L/m | Dh/mm | Tsat /℃ | G/ (kg·m-2·s-1) | q/ (kW·m-2) | x | |||
Huang[ (2013) | 不锈钢 | 0.45 | 2 | 10, 15, 20 | 100~400 | 10~40 | 0~0.9 平均干度 | 69 |
Wu 等[ (2015) | 不锈钢 | 0.53 | 2 | 15 | 400 | 10 | 0~0.75 | 8 |
Longo 等[ (2016) | — | 0.8 | 4 | 5, 10, 20 | 200~800 | 25 | 0.05~0.9 平均干度 | 116 |
Matsuse 等[ (2016) | 铜 | 0.44 | 1 | 10 | 30~400 | 0 | 0.05~1 平均干度 | 50 |
Inoue等[ (2016) | — | 0.55 | 3.5 | 15 | 100, 400 | 0 | 0.06~0.9 进口干度 | 27 |
Jige 等[ (2017) | 铜 | 0.55 | 1.0, 2.16, 3.48 | 15 | 200~600 | 5~20 | 0~1 平均干度 | 123 |
Li等[ (2018) | 铝 | 0.152 4 | 0.643 | 15, 20 | 100~200 | 0 | 0~0.95 平均干度 | 24 |
Lillo等[ (2019) | 不锈钢 | 0.237 5 | 6 | 25, 30, 35.2, 40 | 152~300 | 0 | 0.03~1 平均干度 | 79 |
总计 | 0.643~6 | 5~40 | 30~800 | 0~40 | 0~1 | 496 |
[1] |
CHIEN N B, VU P Q, CHOI K, et al. Boiling heat transfer of R32, CO2 and R290 inside horizontal minichannel[J]. Energy Procedia, 2017, 105: 4822-4827.
doi: 10.1016/j.egypro.2017.03.955 URL |
[2] |
LÓPEZ-BELCHÍ A, ILLÁN-GÓMEZ F, GARCÍA CASCALES J R, et al. R32 and R410A condensation heat transfer coefficient and pressure drop within minichannel multiport tube. Experimental technique and measurements[J]. Applied Thermal Engineering, 2016, 105: 118-131.
doi: 10.1016/j.applthermaleng.2016.05.143 URL |
[3] |
WU C, LI J. Numerical simulation of flow patterns and the effect on heat flux during R32 condensation in microtube[J]. International Journal of Heat and Mass Transfer, 2018, 121: 265-274.
doi: 10.1016/j.ijheatmasstransfer.2017.12.123 URL |
[4] |
ZHU Y, WU X, ZHAO R. R32 flow boiling in horizontal mini channels: Part I. Two-phase flow patterns[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1223-1232.
doi: 10.1016/j.ijheatmasstransfer.2017.07.101 URL |
[5] | 李炅, 张秀平, 贾磊, 等. 润滑油对R32在水平光管内流动沸腾换热特性及压降的影响[J]. 流体机械, 2016, 44(3): 65-69. |
LI Jiong, ZHANG Xiuping, JIA Lei, et al. Impact of lubricating oil on heat transfer and pressure drop characteristics of R32 boiling in horizontal tube[J]. Fluid Machinery, 2016, 44(3): 65-69. | |
[6] | 李庆普, 陶乐仁, 王通, 等. R32水平单管内的蒸发换热特性[J]. 制冷学报, 2017, 38(3): 36-42. |
LI Qingpu, TAO Leren, WANG Tong, et al. Evaporation heat transfer of R32 inside horizontal tubes[J]. Journal of Refrigeration, 2017, 38(3): 36-42. | |
[7] | 张丹亭, 陶乐仁, 李庆普, 等. R32在水平强化管内的流动沸腾换热特性研究[J]. 热能动力工程, 2019, 34(3): 97-102. |
ZHANG Danting, TAO Leren, LI Qingpu, et al. Study on the convective heat transfer of R32 inside horizontal enhanced tubes[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(3): 97-102. | |
[8] | 张茜茜, 张莹, 张道旭, 等. 混合制冷剂R32/R290在水平三维微肋管内沸腾换热研究[J]. 低温工程, 2020(6): 9-17. |
ZHANG Qianqian, ZHANG Ying, ZHANG Daoxu, et al. Numerical simulation of boiling heat transfer for mixed refrigerant R32/R290 in a horizontal 3D micro-fin tube[J]. Cryogenics, 2020(6): 9-17. | |
[9] |
LI M, DANG C, HIHARA E. Flow boiling heat transfer of HFO1234yf and HFC32 refrigerant mixtures in a smooth horizontal tube: Part II. Prediction method[J]. International Journal of Heat and Mass Transfer, 2013, 64: 591-608.
doi: 10.1016/j.ijheatmasstransfer.2013.04.047 URL |
[10] | YOSHIDA S, MORI H, HONG H, et al. Prediction of heat transfer coefficient for refrigerants flowing in horizontal evaporator tubes[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 1994, 11(1): 67-78. |
[11] |
KIM S, MUDAWAR I. Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels —Part II. Two-phase heat transfer coefficient[J]. International Journal of Heat and Mass Transfer, 2013, 64: 1239-1256.
doi: 10.1016/j.ijheatmasstransfer.2013.04.014 URL |
[12] |
ZHU Y, WU X, ZHAO R. R32 flow boiling in horizontal mini channels: Part II. Flow-pattern based prediction methods for heat transfer and pressure drop[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1233-1244.
doi: 10.1016/j.ijheatmasstransfer.2017.07.099 URL |
[13] |
WU X, ZHU Y, HUANG X. Influence of 0° helix angle micro fins on flow and heat transfer of R32 evaporating in a horizontal mini multichannel flat tube[J]. Experimental Thermal and Fluid Science, 2015, 68: 669-680.
doi: 10.1016/j.expthermflusci.2015.07.010 URL |
[14] |
LONGO G A, MANCIN S, RIGHETTI G, et al. HFC32 and HFC410A flow boiling inside a 4 mm horizontal smooth tube[J]. International Journal of Refrigeration, 2016, 61: 12-22.
doi: 10.1016/j.ijrefrig.2015.09.002 URL |
[15] |
MATSUSE Y, ENOKI K, MORI H, et al. Boiling heat transfer and pressure drop of a refrigerant R32 flowing in a small horizontal tube[J]. Heat Transfer Engineering, 2016, 37(7/8): 668-678.
doi: 10.1080/01457632.2015.1067057 URL |
[16] |
JIGE D, SAGAWA K, INOUE N. Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes[J]. International Journal of Refrigeration, 2017, 76: 206-218.
doi: 10.1016/j.ijrefrig.2017.02.012 URL |
[17] |
JIGE D, INOUE N. Flow boiling heat transfer and pressure drop of R32 inside 2.1 mm, 2.6 mm and 3.1 mm microfin tubes[J]. International Journal of Heat and Mass Transfer, 2019, 134: 566-573.
doi: 10.1016/j.ijheatmasstransfer.2019.01.027 URL |
[18] |
HE G, ZHOU S, LI D, et al. Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2018, 125: 943-958.
doi: 10.1016/j.ijheatmasstransfer.2018.04.116 URL |
[19] |
LILLO G, MASTRULLO R, MAURO A W, et al. Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A[J]. International Journal of Refrigeration, 2019, 97: 143-156.
doi: 10.1016/j.ijrefrig.2018.09.024 URL |
[20] | 黄秀杰. R32在微细通道内流动沸腾特性的实验及数值研究[D]. 北京: 清华大学, 2013. |
HUANG Xiujie. Experimental and numerical investigation on R32 flow boiling characteristics in micro-channels[D]. Beijing: Tsinghua University, 2013. | |
[21] | INOUE N, JIGE D, SAGAWA K. Evaporation heat transfer and pressure drop of R32 inside small-diameter 4.0 mm tubes[C]//International Refrigeration and Air Conditioning Conference. West Lafayette, Indiana, USA: Purdue e-Pubs, 2016: 1730. |
[22] | LI H, HRNJAK P. Heat transfer and pressure drop of R32 evaporating in one pass microchannel tube with parallel channels[J]. International Journal of Heat and Mass Transfer, 2018, 127: 526-540. |
[23] |
TIAN Z, MA L, GU B, et al. Numerical model of a parallel flow minichannel evaporator with new flow boiling heat transfer correlation[J]. International Journal of Refrigeration, 2016, 63: 1-13.
doi: 10.1016/j.ijrefrig.2015.10.032 URL |
[24] |
HAN X H, FANG Y B, WU M, et al. Study on flow boiling heat transfer characteristics of R161/oil mixture inside horizontal micro-fin tube[J]. International Journal of Heat and Mass Transfer, 2017, 104: 276-287.
doi: 10.1016/j.ijheatmasstransfer.2016.08.043 URL |
[25] | COOPER M G. Saturation nucleate pool boiling —A simple correlation[C]//First U.K. National Conference on Heat Transfer. UK: Pergamon, 1984: 785-793. |
[26] |
FANG X, WU Q, YUAN Y. A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 107: 972-981.
doi: 10.1016/j.ijheatmasstransfer.2016.10.125 URL |
[27] |
MÜLLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308.
doi: 10.1016/0255-2701(86)80008-3 URL |
[28] |
DEL COL D, BISETTO A, BORTOLATO M, et al. Experiments and updated model for two phase frictional pressure drop inside minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 67: 326-337.
doi: 10.1016/j.ijheatmasstransfer.2013.07.093 URL |
[1] | 罗睿乔. 井下节流技术在南海东部高温气田的应用[J]. 海洋工程装备与技术, 2022, 9(1): 58-66. |
[2] | 刘勖诚, 谷波, 曾炜杰, 杜仲星, 田镇. 小通道内制冷剂两相流动摩擦压降关联式分析[J]. 上海交通大学学报, 2021, 55(9): 1095-1107. |
[3] | 沙丽丽,巨永林,张华. 在磁场作用下Fe3O4/Water纳米流体湍流对流换热实验研究[J]. 上海交通大学学报(自然版), 2019, 53(2): 134-139. |
[4] | 马磊,谷波,田镇,李萍. 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1043-1049. |
[5] | 邹旭毛,李良星,孔刘波,王华胜. 颗粒堆积床内两相流动阻力及相间摩擦力[J]. 上海交通大学学报(自然版), 2017, 51(4): 470-. |
[6] | 陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2. 690合金传热管疲劳裂纹扩展研究[J]. 上海交通大学学报(自然版), 2014, 48(11): 1639-1643. |
[7] | 贾洪伟1,张鹏1,郭涛2,付鑫3,江世臣3. 微通道热沉内液氮的流动沸腾换热实验[J]. 上海交通大学学报(自然版), 2014, 48(09): 1274-1278. |
[8] | 胡海涛1, 黄翔超1, 丁国良1, 邓斌2, 郑永新3, 高屹峰3, 宋吉3. 润滑油对小管径强化管内R410A流动冷凝压降特性的影响[J]. 上海交通大学学报(自然版), 2012, 46(04): 515-519. |
[9] | 刘振华, 杨雪飞. 纳米流体在回路型重力热管中的沸腾传热特性[J]. 上海交通大学学报(自然版), 2011, 45(06): 890-894. |
[10] | 黄翔超,胡海涛,丁国良,朱禹,邓斌,高屹峰. 润滑油对R410A在小管径水平光管内流动冷凝摩擦压降的影响 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1362-1366. |
[11] | 胡海涛,黄翔超,丁国良,邓斌,高屹峰. 小管径强化管内R410A-油混合物流动沸腾阻力特性 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1317-1321. |
[12] | 浦晖,丁国良,胡海涛,高屹峰. 盐雾腐蚀对铜翅片换热器空气侧压降特性的影响[J]. 上海交通大学学报(自然版), 2010, 44(04): 545-0549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||