上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1095-1107.doi: 10.16183/j.cnki.jsjtu.2020.159
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“能源与动力工程”专题
收稿日期:
2020-06-01
出版日期:
2021-09-28
发布日期:
2021-10-08
通讯作者:
谷波
E-mail:gubo@sjtu.edu.cn
作者简介:
刘勖诚(1997-),男,江西省吉安市人,硕士生,主要研究方向为换热器.
基金资助:
LIU Xucheng1, GU Bo1(), ZENG Weijie1, DU Zhongxing1, TIAN Zhen2
Received:
2020-06-01
Online:
2021-09-28
Published:
2021-10-08
Contact:
GU Bo
E-mail:gubo@sjtu.edu.cn
摘要:
针对小通道内两相流动摩擦压降的关联式进行了全面分析,描述关联式之间的继承发展关系,并指出不同关联式之间的创新之处.为了评估各种关联式在小通道中的通用性和精度,建立了一个大型摩擦压降数据库,此数据库在蒸发和冷凝/绝热工况下分别有 1302 和 1576 个数据点.对26种关联式分工况进行评估分析,并发现Sempértegui-Tapia和Kim关联式分别在蒸发工况、冷凝/绝热工况下具有最佳的预测能力,最后提出了关于关联式改进的建议.
中图分类号:
刘勖诚, 谷波, 曾炜杰, 杜仲星, 田镇. 小通道内制冷剂两相流动摩擦压降关联式分析[J]. 上海交通大学学报, 2021, 55(9): 1095-1107.
LIU Xucheng, GU Bo, ZENG Weijie, DU Zhongxing, TIAN Zhen. Analysis of Frictional Pressure Drop Correlations of Refrigerant Two-Phase Flow in Mini-Channel[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1095-1107.
表3
分相模型关联式和经验关联式
文献编号 | 关联式 | 实验信息等 | ||
---|---|---|---|---|
[ | | 适用于小通道和常规通道,流型为环状流,Dh=0.517~31.7 mm,工质为水、R134a、R245fa及多种二元混合物,G=39.4~3498 kg/(s·m2),x=0.01~0.97;平均相对偏差为13.1%,几乎所有数据涵盖在±30%的误差带中;工况为绝热 | ||
[ | C=21 | 基于文献[ | ||
文献编号 | 关联式 | 实验信息等 | ||
[ | X=18.65 | 基于文献[ | ||
[ | C=0.227 Ncon= | 基于文献[ | ||
[ | C= | 基于文献[ | ||
[ | C= | 基于文献[ | ||
[ | C=4.6468×10-6 | 基于文献[ | ||
[ | C=21 | 基于文献[ | ||
[ | C=20R Sr= | 基于文献[ | ||
[ | C=λx0.35 | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
文献编号 | 关联式 | 实验信息等 | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ | ||
[ | | 基于文献[ |
表4
蒸发、冷凝和绝热工况摩擦压降数据库
文献编号 | 工况 | Dh/mm | 工质 | G/(kg·s-1·m-2) | x | 管道类型 | 数据量 |
---|---|---|---|---|---|---|---|
[ | 蒸发工况 | 1.5 | R744 | 300~600 | 0.02~0.98 | 水平圆管 | 265 |
[ | 蒸发工况 | 1.7 | R290 | 100~500 | 0.09~1.00 | 垂直圆管 | 64 |
[ | 蒸发工况 | 1.224、1.7 | R717 | 100~500 | 0.05~0.98 | 垂直圆管 | 238 |
[ | 蒸发工况 | 1.42 | R744 | 300~600 | 0.04~1.00 | 水平圆管 | 276 |
[ | 蒸发工况 | 2.6 | R600a、R134a | 240~440 | 0.10~0.77 | 水平圆管 | 21 |
[ | 蒸发工况 | 2.32 | R134a、R245fa | 200~500 | 0.21~0.99 | 水平圆管 | 100 |
[ | 蒸发工况 | 1.0、2.2 | R32 | 200~400 | 0.04~0.92 | 水平矩管 | 79 |
[ | 蒸发工况 | 0.68 | R134a | 600~1400 | 0.11~0.21 | 水平矩形管 | 83 |
[ | 蒸发工况 | 2 | R32 | 100~400 | 0.02~0.90 | 水平圆管 | 69 |
[ | 蒸发工况 | 1.6 | R134a、R1234yf | 400~500 | 0.07~0.52 | 垂直圆管 | 78 |
[ | 蒸发工况 | 0.83、1.22、1.70 | R134a | 100~400 | 0.04~0.36 | 垂直圆管 | 29 |
[ | 冷凝/绝热工况 | 0.529 | R744 | 200~1400 | 0.00~1.00 | 圆管 | 304 |
[ | 冷凝/绝热工况 | 1.1 | R134a、1234yf、 R1234ze(E)、R600a | 100~1200 | 0.03~0.97 | 圆管 | 330 |
[ | 冷凝/绝热工况 | 0.762 | R134a、1234ze(E) | 200~800 | 0.10~0.96 | 圆管 | 100 |
[ | 冷凝/绝热工况 | 0.952、1.152 | R152a | 200~800 | 0.11~0.90 | 圆形和矩形管 | 76 |
[ | 冷凝/绝热工况 | 0.509、0.79 | R134a、245fa | 350~2000 | 0.00~0.92 | 圆管 | 305 |
[ | 冷凝/绝热工况 | 0.96、2.00、1.23 | R134a、1234yf | 200~800 | 0.10~1.00 | 圆管 | 265 |
[ | 冷凝/绝热工况 | 0.96 | R290 | 200~800 | 0.10~0.96 | 圆管 | 48 |
[ | 冷凝/绝热工况 | 1.152、0.952、1.304 | R32、R22、R152a | 200~600 | 0.08~0.92 | 圆形和方形管 | 148 |
表5
关联式预测值与实验值比较
模型 | 关联式 | 蒸发工况 | 冷凝/绝热工况 | |||
---|---|---|---|---|---|---|
MAE/% | θ30/% | MAE/% | θ30/% | |||
均相 | 文献[ | 47.41 | 13.44 | 37.00 | 37.73 | |
文献[ | 39.04 | 26.96 | 29.53 | 61.45 | ||
文献[ | 43.36 | 20.12 | 34.05 | 48.83 | ||
文献[ | 40.32 | 25.50 | 31.30 | 56.18 | ||
文献[ | 40.69 | 24.42 | 31.45 | 56.31 | ||
文献[ | 38.01 | 29.03 | 28.54 | 67.15 | ||
文献[ | 44.55 | 17.59 | 34.26 | 48.45 | ||
文献[ | 47.02 | 36.25 | 56.22 | 58.97 | ||
单相增强型 | 文献[ | 30.36 | 48.23 | 31.10 | 54.98 | |
文献[ | 79.73 | 0 | 74.15 | 0.70 | ||
文献[ | 56.40 | 35.79 | 52.69 | 38.24 | ||
文献[ | 29.34 | 53.00 | 24.68 | 72.86 | ||
文献[ | 41.01 | 32.10 | 35.65 | 44.77 | ||
文献[ | 42.95 | 29.95 | 69.57 | 43.56 | ||
文献[ | 61.42 | 47.31 | 132.95 | 7.86 | ||
文献[ | 94.30 | 26.50 | 228.11 | 12.62 | ||
文献[ | 53.88 | 33.33 | 125.56 | 15.61 | ||
全相增强型 | 文献[ | 37.83 | 39.65 | 29.47 | 69.61 | |
文献[ | 29.82 | 61.62 | 37.39 | 52.44 | ||
文献[ | 98.00 | 10.29 | 161.31 | 5.64 | ||
文献[ | 61.47 | 12.44 | 69.91 | 5.90 | ||
文献[ | 31.19 | 47.24 | 31.14 | 65.76 | ||
文献[ | 25.65 | 67.90 | 32.55 | 61.64 | ||
文献[ | 29.14 | 52.23 | 27.42 | 69.44 | ||
文献[ | 99.20 | 26.42 | 129.83 | 21.05 | ||
文献[ | 37.85 | 36.02 | 38.35 | 41.92 |
[1] | 颜晓虹, 唐大伟, 王际辉. 矩形微槽内水的流动沸腾压降特性实验研究[J]. 华中科技大学学报(自然科学版), 2007, 35(5):88-90. |
YAN Xiaohong, TANG Dawei, WANG Jihui. An experimental investigation of the pressure drop of water in a horizontal rectangle micro-groove[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(5):88-90. | |
[2] | 谢鸣宇, 罗小平, 胡丽琴. 微通道内R22制冷剂流动沸腾的压降特性[J]. 化学工程, 2016, 44(1):38-42. |
XIE Mingyu, LUO Xiaoping, HU Liqin. Pressure drop of flow boiling R22 in microchannels[J]. Chemical Engineering (China), 2016, 44(1):38-42. | |
[3] | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾压降特性[J]. 化工学报, 2017, 68(12):76-84. |
JIANG Linlin, LIU Jianhua, ZHANG Liang, et al. Flow boiling pressure drop characteristics of CO2 in horizontal micro tube[J]. CIESC Journal, 2017, 68(12):76-84. | |
[4] | 邱金友, 张华, 余晓明, 等. R1234ze(E)在水平圆管内流动沸腾换热过程中摩擦压降特性实验研究[J]. 制冷学报, 2016, 37(1):32-37. |
QIU Jinyou, ZHANG Hua, YU Xiaoming, et al. Investigation of frictional pressure drop during flow boiling of R1234ze(E) in horizontal tube[J]. Journal of Refrigeration, 2016, 37(1):32-37. | |
[5] | 许玉, 方贤德, 张宏刚, 等. 管内两相流摩擦压力损失计算研究进展[J]. 流体机械, 2012, 40(5):34-40. |
XU Yu, FANG Xiande, ZHANG Honggang, et al. Research progress of frictional pressure drop calculations for two-phase flow in pipes[J]. Fluid Machinery, 2012, 40(5):34-40. | |
[6] | 姚超, 李会雄, 薛玉卿, 等. 垂直下降管内两相流摩擦压降计算关联式评价[J]. 工程热物理学报, 2016, 37(3):545-550. |
YAO Chao, LI Huixiong, XUE Yuqing, et al. Evaluation of frictional pressure drop correlations for two-phase flow in vertical downward tubes[J]. Journal of Engineering Thermophysics, 2016, 37(3):545-550. | |
[7] | KANDLIKAR S G, GRANDE W J. Evolution of microchannel flow passages: Thermohydraulic performance and fabrication technology[J]. Heat Transfer Engineering, 2003, 24(1):3-17. |
[8] | CHURCHILL S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering (New York), 1977, 84(24):91-92. |
[9] | MCADAMS W H. Vaporization inside horizontal tubes—II: Benzene oil mixtures[J]. Industrial & Engineering Chemistry, 1942, 64:193-200. |
[10] | AWAD M M, MUZYCHKA Y S. Bounds on two-phase frictional pressure gradient in minichannels and microchannels[C]// Proceedings of ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. Limerick, Ireland: Nanotechnology Institute, 2006: 1137-1145. |
[11] | AKERS W W, DEANS H A, CROSSER O K. Condensing heat transfer within horizontal tubes[J]. Chemical Engineering Progress, 1958, 54(10):4300403. |
[12] |
AWAD M M, MUZYCHKA Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1):106-113.
doi: 10.1016/j.expthermflusci.2008.07.006 URL |
[13] | CICCHITTI A, LOMBARDI C, SILVESTRI M, et al. Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurements[R]. Milan, Italy: Centro Informazioni Studi Esperienze, 1959. |
[14] |
DUKLER A E, WICKS M, CLEVELAND R G. Frictional pressure drop in two-phase flow: A. A comparison of existing correlations for pressure loss and holdup[J]. AIChE Journal, 1964, 10(1):38-43.
doi: 10.1002/(ISSN)1547-5905 URL |
[15] |
BEATTIE D R H, WHALLEY P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1):83-87.
doi: 10.1016/0301-9322(82)90009-X URL |
[16] |
LIN S, KWOK C C K, LI R Y, et al. Local frictional pressure drop during vaporization of R-12 through capillary tubes[J]. International Journal of Multiphase Flow, 1991, 17(1):95-102.
doi: 10.1016/0301-9322(91)90072-B URL |
[17] |
DUCOULOMBIER M, COLASSON S, BONJOUR J, et al. Carbon dioxide flow boiling in a single microchannel—Part I: Pressure drops[J]. Experimental Thermal and Fluid Science, 2011, 35(4):581-596.
doi: 10.1016/j.expthermflusci.2010.12.010 URL |
[18] |
CIONCOLINI A, THOME J R, LOMBARDI C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows[J]. International Journal of Multiphase Flow, 2009, 35(12):1138-1148.
doi: 10.1016/j.ijmultiphaseflow.2009.07.005 URL |
[19] |
VENKATESAN M, DAS S K, BALAKRISHNAN A R. Effect of diameter on two-phase pressure drop in narrow tubes[J]. Experimental Thermal and Fluid Science, 2011, 35(3):531-541.
doi: 10.1016/j.expthermflusci.2010.12.007 URL |
[20] |
SARDESHPANDE M V, RANADE V V. Two-phase flow boiling in small channels: A brief review[J]. Sadhana, 2013, 38(6):1083-1126.
doi: 10.1007/s12046-013-0192-7 URL |
[21] |
LEE J, MUDAWAR I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I—Pressure drop characteristics[J]. International Journal of Heat and Mass Transfer, 2005, 48(5):928-940.
doi: 10.1016/j.ijheatmasstransfer.2004.09.018 URL |
[22] |
CHOI C, KIM M. Flow pattern based correlations of two-phase pressure drop in rectangular microchannels[J]. International Journal of Heat and Fluid Flow, 2011, 32(6):1199-1207.
doi: 10.1016/j.ijheatfluidflow.2011.08.002 URL |
[23] |
YUN J H, JEONG J H. A review of prediction methods for two-phase pressure loss in mini/micro-channels[J]. International Journal of Air-Conditioning and Refrigeration, 2016, 24(1):1630002.
doi: 10.1142/S2010132516300020 URL |
[24] | LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45:39-48. |
[25] |
CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12):1767-1778.
doi: 10.1016/0017-9310(67)90047-6 URL |
[26] |
MISHIMA K, HIBIKI T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4):703-712.
doi: 10.1016/0301-9322(96)00010-9 URL |
[27] |
YU W, FRANCE D M, WAMBSGANSS M W, et al. Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube[J]. International Journal of Multiphase Flow, 2002, 28(6):927-941.
doi: 10.1016/S0301-9322(02)00019-8 URL |
[28] |
HWANG Y W, KIM M S. The pressure drop in microtubes and the correlation development[J]. International Journal of Heat and Mass Transfer, 2006, 49(11/12):1804-1812.
doi: 10.1016/j.ijheatmasstransfer.2005.10.040 URL |
[29] |
KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12):3246-3261.
doi: 10.1016/j.ijheatmasstransfer.2012.02.047 URL |
[30] |
KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2):718-734.
doi: 10.1016/j.ijheatmasstransfer.2012.11.045 URL |
[31] |
LÓPEZ-BELCHÍ A, ILLÁN-GÓMEZ F, VERA-GARCÍA F, et al. Experimental condensing two-phase frictional pressure drop inside mini-channels. Comparisons and new model development[J]. International Journal of Heat and Mass Transfer, 2014, 75:581-591.
doi: 10.1016/j.ijheatmasstransfer.2014.04.003 URL |
[32] |
HOSSAIN M A, AFROZ H M M, MIYARA A. Two-phase frictional multiplier correlation for the prediction of condensation pressure drop inside smooth horizontal tube[J]. Procedia Engineering, 2015, 105:64-72.
doi: 10.1016/j.proeng.2015.05.008 URL |
[33] |
MACDONALD M, GARIMELLA S. Hydrocarbon condensation in horizontal smooth tubes: Part II—Heat transfer coefficient and pressure drop modeling[J]. International Journal of Heat and Mass Transfer, 2016, 93:1248-1261.
doi: 10.1016/j.ijheatmasstransfer.2015.09.019 URL |
[34] |
RAHMAN M M, KARIYA K, MIYARA A. Comparison and development of new correlation for adiabatic two-phase pressure drop of refrigerant flowing inside a multiport minichannel with and without fins[J]. International Journal of Refrigeration, 2017, 82:119-129.
doi: 10.1016/j.ijrefrig.2017.06.001 URL |
[35] |
LI X J, HIBIKI T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels[J]. Applied Thermal Engineering, 2017, 116:316-328.
doi: 10.1016/j.applthermaleng.2017.01.079 URL |
[36] |
LI X J, HIBIKI T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels[J]. Applied Thermal Engineering, 2017, 116:316-328.
doi: 10.1016/j.applthermaleng.2017.01.079 URL |
[37] |
CHISHOLM D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2):347-358.
doi: 10.1016/0017-9310(73)90063-X URL |
[38] |
ZHANG M, WEBB R L. Correlation of two-phase friction for refrigerants in small-diameter tubes[J]. Experimental Thermal and Fluid Science, 2001, 25(3/4):131-139.
doi: 10.1016/S0894-1777(01)00066-8 URL |
[39] |
LI W, WU Z. Generalized adiabatic pressure drop correlations in evaporative micro/mini-channels[J]. Experimental Thermal and Fluid Science, 2011, 35(6):866-872.
doi: 10.1016/j.expthermflusci.2010.07.005 URL |
[40] |
YU X, XIA D F. A new correlation of two-phase frictional pressure drop for evaporating flow in pipes[J]. International Journal of Refrigeration, 2012, 35(7):2039-2050.
doi: 10.1016/j.ijrefrig.2012.06.011 URL |
[41] |
GAN Y H, XU J L, YAN Y Y. An experimental study of two-phase pressure drop of acetone in triangular silicon micro-channels[J]. Applied Thermal Engineering, 2015, 80:76-86.
doi: 10.1016/j.applthermaleng.2015.01.038 URL |
[42] | CHISHOLM D. Two-phase flow in pipelines and heat exchangers[M]. London, UK: Institution of Chemical Engineers, 1982. |
[43] |
JIGE D, INOUE N, KOYAMA S. Condensation of refrigerants in a multiport tube with rectangular minichannels[J]. International Journal of Refrigeration, 2016, 67:202-213.
doi: 10.1016/j.ijrefrig.2016.03.020 URL |
[44] |
SEMPÉRTEGUI-TAPIA D F, RIBATSKI G. Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development[J]. International Journal of Refrigeration, 2017, 79:143-163.
doi: 10.1016/j.ijrefrig.2017.03.024 URL |
[45] |
MÜLLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6):297-308.
doi: 10.1016/0255-2701(86)80008-3 URL |
[46] |
PAN L M, YAN R G, HUANG H J, et al. Experimental study on the flow boiling pressure drop characteristics in parallel multiple microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 116:642-654.
doi: 10.1016/j.ijheatmasstransfer.2017.09.033 URL |
[47] | GARIMELLA S, AGARWAL A, KILLION J D. Condensation pressure drop in circular microchannels[J]. Heat Transfer Engineering, 2005, 26(3):28-35. |
[48] | GARIMELLA S, AGARWAL A, COLEMAN J W. Two-phase pressure drops in the annular flow regime in circular microchannels[C]// 21st IIR International Congress of Refrigeration. Washington DC, USA: International Institute of Refrigeration, 2003: 12-22. |
[49] |
WAMBSGANSS M W, JENDRZEJCZYK J A, FRANCE D M, et al. Frictional pressure gradients in two-phase flow in a small horizontal rectangular channel[J]. Experimental Thermal and Fluid Science, 1992, 5(1):40-56.
doi: 10.1016/0894-1777(92)90055-A URL |
[50] |
SUN L C, MISHIMA K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1):47-54.
doi: 10.1016/j.ijmultiphaseflow.2008.08.003 URL |
[51] |
KIM S M, MUDAWAR I. Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77:74-97.
doi: 10.1016/j.ijheatmasstransfer.2014.04.035 URL |
[52] |
MAQBOOL M H, PALM B, KHODABANDEH R. Investigation of two phase heat transfer and pressure drop of propane in a vertical circular minichannel[J]. Experimental Thermal and Fluid Science, 2013, 46:120-130.
doi: 10.1016/j.expthermflusci.2012.12.002 URL |
[53] |
MAQBOOL M H, PALM B, KHODABANDEH R. Flow boiling of ammonia in vertical small diameter tubes: Two phase frictional pressure drop results and assessment of prediction methods[J]. International Journal of Thermal Sciences, 2012, 54:1-12.
doi: 10.1016/j.ijthermalsci.2011.11.018 URL |
[54] |
WU J, KOETTIG T, FRANKE C, et al. Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10):2154-2162.
doi: 10.1016/j.ijheatmasstransfer.2010.12.009 URL |
[55] |
COPETTI J B, MACAGNAN M H, ZINANI F. Experimental study on R-600a boiling in 2.6 mm tube[J]. International Journal of Refrigeration, 2013, 36(2):325-334.
doi: 10.1016/j.ijrefrig.2012.09.007 URL |
[56] |
TIBIRIÇÁ C B, DA SILVA S J, RIBATSKI G. Experimental investigation of flow boiling pressure drop of R134A in a microscale horizontal smooth tube[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(1):011006.
doi: 10.1115/1.4003728 URL |
[57] |
TIBIRIÇÁ C B, RIBATSKI G. Two-phase frictional pressure drop and flow boiling heat transfer for R245fa in a 2.32-mm tube[J]. Heat Transfer Engineering, 2011, 32(13/14):1139-1149.
doi: 10.1080/01457632.2011.562725 URL |
[58] |
JIGE D, SAGAWA K, INOUE N. Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes[J]. International Journal of Refrigeration, 2017, 76:206-218.
doi: 10.1016/j.ijrefrig.2017.02.012 URL |
[59] |
KEEPAIBOON C, THIANGTHAM P, MAHIAN O, et al. Pressure drop characteristics of R134a during flow boiling in a single rectangular micro-channel[J]. International Communications in Heat and Mass Transfer, 2016, 71:245-253.
doi: 10.1016/j.icheatmasstransfer.2015.12.013 URL |
[60] | 黄秀杰. R32在微细通道内流动沸腾特性的实验及数值研究[D]. 北京: 清华大学, 2013. |
HUANG Xiujie. Experimental and numerical investigation on R32 flow boiling characteristics in micro-channels[D]. Beijing: Tsinghua University, 2013. | |
[61] |
ANWAR Z, PALM B, KHODABANDEH R. Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions[J]. Experimental Thermal and Fluid Science, 2015, 66:137-149.
doi: 10.1016/j.expthermflusci.2015.03.021 URL |
[62] | OWHAIB W. Experimental heat transfer, pressure drop, and flow visualization of R-134a in vertical mini/micro tubes[D].Stockholm, Sweden: KTH Royal Institute of Technology, 2007. |
[63] |
DEL COL D, BORTOLATO M, AZZOLIN M, et al. Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants[J]. International Journal of Refrigeration, 2015, 50:87-103.
doi: 10.1016/j.ijrefrig.2014.10.022 URL |
[64] |
LIU N, LI J M, SUN J, et al. Heat transfer and pressure drop during condensation of R152a in circular and square microchannels[J]. Experimental Thermal and Fluid Science, 2013, 47:60-67.
doi: 10.1016/j.expthermflusci.2013.01.002 URL |
[65] |
REVELLIN R, THOME J R. Adiabatic two-phase frictional pressure drops in microchannels[J]. Experimental Thermal and Fluid Science, 2007, 31(7):673-685.
doi: 10.1016/j.expthermflusci.2006.07.001 URL |
[66] |
DEL COL D, BISETTO A, BORTOLATO M, et al. Experiments and updated model for two phase frictional pressure drop inside minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 67:326-337.
doi: 10.1016/j.ijheatmasstransfer.2013.07.093 URL |
[67] |
DEL COL D, BORTOLATO M, BORTOLIN S. Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel[J]. International Journal of Refrigeration, 2014, 47:66-84.
doi: 10.1016/j.ijrefrig.2014.08.002 URL |
[68] |
LIU N, LI J M. Experimental study on pressure drop of R32, R152a and R22 during condensation in horizontal minichannels[J]. Experimental Thermal and Fluid Science, 2016, 71:14-24.
doi: 10.1016/j.expthermflusci.2015.10.013 URL |
[69] |
ZHU Y, WU X M, ZHAO R. R32 flow boiling in horizontal mini channels: Part II. Flow-pattern based prediction methods for heat transfer and pressure drop[J]. International Journal of Heat and Mass Transfer, 2017, 115:1233-1244.
doi: 10.1016/j.ijheatmasstransfer.2017.07.099 URL |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 郭涛, 刘明明, 曹蕾, 胡京招, 洪国军, 尤云祥. 疏浚泵内泥沙颗粒的瞬态追踪数值方法[J]. 上海交通大学学报, 2022, 56(5): 656-663. |
[3] | 张大元, 姜德胜, 陈冠宇, 孟飞翔. 基于剩余作战能力的地空导弹武器系统生存效能评估方法研究[J]. 空天防御, 2022, 5(4): 24-29. |
[4] | 许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. |
[5] | 郭加伟, 许志杰, 何其昌. 虚拟装配手势库设计及人机工效评估优化[J]. 上海交通大学学报, 2022, 56(2): 127-133. |
[6] | 罗菁, 张逸楠. 基于改进Grey-AHP的察打一体无人机作战效能评估方法[J]. 空天防御, 2022, 5(2): 1-7. |
[7] | 李伟湋, 高培雪, 陈进, 路玉卿. 基于累积前景理论和三支决策的无人机态势评估[J]. 上海交通大学学报, 2022, 56(11): 1479-1490. |
[8] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[9] | 胡益恺, 王春香, 杨明. 智能车辆决策方法研究综述[J]. 上海交通大学学报, 2021, 55(8): 1035-1048. |
[10] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[11] | 游广增, 汤翔鹰, 胡炎, 邰能灵, 朱欣春, 李玲芳. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813. |
[12] | 郑益凯, 范云锋, 张思霈, 朱莹, 吴凯. 基于改进灰色评估模型的地空导弹系统效能分析[J]. 空天防御, 2021, 4(2): 20-. |
[13] | 郑奕扬, 倪何, 金家善. 基于MSOP的蒸汽动力系统单参数运行稳定性评估方法[J]. 上海交通大学学报, 2021, 55(11): 1438-1444. |
[14] | 卜晓东, 周志超, 徐振森, 张军. 基于改进信息熵法的反集群目标作战效能评估研究[J]. 空天防御, 2021, 4(1): 14-18. |
[15] | 陈璇, 李奇, 李博文, 肖意可, 晏良. 基于多源数据可信度的制导精度融合评估[J]. 空天防御, 2020, 3(4): 14-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||