[1]SZYBIST J P, SONG J H, ALAM M, et al. Biodiesel combustion, emissions and emission control[J]. Fuel Processing Technology, 2007, 88(7): 679-691.
[2]BASHA S A, GOPAL K R, JEBARAJ S. A review on biodiesel production, combustion, emissions and performance[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1628-1634.
[3]SMITH B L, OTT L S, BRUNO T J. Composition-explicit distillation curves of commercial biodiesel fuels: Comparison of petroleum-derived fuel with B20 and B100[J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5832-5840.
[4]DINCER K. Lower emissions from biodiesel combustion[J]. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, 2008, 30(10): 963-968.
[5]ENWEREMADU C C, RUTTO H L. Combustion, emission and engine performance characteristics of used cooking oil biodiesel: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2863-2873.
[6]BERGTHORSON J M, THOMSON M J. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1393-1417.
[7]HERBINET O, PITZ W J, WESTBROOK C K. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate[J]. Combustion and Flame, 2010, 157(5): 893-908.
[8]LI A, DENG Z W, ZHU L, et al. Development and validation of a binary surrogate model for biodiesel[EB/OL]. (2017-10-08)[ 2018-5-12]. https://saemobilus.sae.org/content/2017-01-2326.
[9]KHOLGHY M R, WEINGARTEN J, THOMSON M J. A study of the effects of the ester moiety on soot formation and species concentrations in a laminar coflow diffusion flame of a surrogate for B100 biodiesel[J]. Proceedings of the Combustion Institute, 2015, 35(1): 905-912.
[10]MELTON L A. Soot diagnostics based on laser heating[J]. Applied Optics, 1984, 23(13): 2201.
[11]GAL S, SARATHY S M, THOMSON M J, et al. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate[J]. Combustion and Flame, 2008, 155(4): 635-650.
[12]TOGBE C, MAY-CARLE J B, DAYMA G, et al. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: Methyl octanoate-ethanol mixtures[J]. Journal of Physical Chemistry A, 2010, 114(11): 3896-3908.
[13]SARATHY S M, THOMSON M J, PITZ W J, et al. An experimental and kinetic modeling study of methyl decanoate combustion[J]. Proceedings of the Combustion Institute, 2011, 33(1): 399-405.
[14]JIN H F, FRASSOLDATI A, WANG Y Z, et al. Kinetic modeling study of benzene and PAH formation in laminar methane flames[J]. Combustion and Flame, 2015, 162(5): 1692-1711.
[15]WEINGARTEN J. Structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame[D]. Toronto, Canada: University of Toronto, 2015.
[16]MCCORMICK R L, RATCLIFF M, MOENS L, et al. Several factors affecting the stability of biodiesel in standard accelerated tests[J]. Fuel Processing Technology, 2007, 88(7): 651-657.
[17]WANG Y, RAJ A, CHUNG S H. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels[J]. Combustion and Flame, 2015, 162(3): 586-596. |