上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (10): 1053-1064.doi: 10.16183/j.cnki.jsjtu.2019.143
何玉松,白敏丽,郝亮
收稿日期:
2019-05-23
出版日期:
2020-10-28
发布日期:
2020-11-09
通讯作者:
郝亮,男,副教授,电话(Tel.): 0411-82463813;E-mail: haoliang@dlut.edu.cn.
作者简介:
何玉松(1993-),男,河北省石家庄市人,博士生,主要研究方向为质子交换膜燃料电池传质机理.
基金资助:
HE Yusong,BAI Minli,HAO Liang
Received:
2019-05-23
Online:
2020-10-28
Published:
2020-11-09
摘要: 运用基于球体的模拟退火方法和动态颗粒堆积模型数值重建了微扩散层(MPL),其中前者更能准确地反映多孔介质的孔隙特性.利用具有多反射固体边界的多弛豫时间格子玻尔兹曼方法模拟了重建的微扩散层内的单相流动.系统地分析了碳相体积分数、聚四氟乙烯(PTFE)载量、孔隙率和PTFE分布方式对微扩散层孔隙结构和渗透率的影响.结果表明:微扩散层渗透率随碳相体积分数和PTFE载量的增加而减小,且PTFE的分布方式影响微扩散层的孔隙结构和渗透率.KC关联式低估了MPL的渗透率,通过拟合计算数据提出了预测MPL渗透系数的关联式,预测结果与孔隙尺度模拟结果的相对误差小于12%.
中图分类号:
何玉松,白敏丽,郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064.
HE Yusong,BAI Minli,HAO Liang. Pore Structure and Pore Scale Simulation of Permeability of Micro-Porous Layer in PEM Fuel Cell[J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1053-1064.
[1] | CHEN G, ZHANG G, GUO L, et al. Systematic study on the functions and mechanisms of micro po-rous layer on water transport in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(9): 5063-5073. |
[2] | TSENG C J, LO S K. Effects of microstructure cha-racteristics of gas diffusion layer and microporous layer on the performance of PEMFC[J]. Energy Con-version and Management, 2010, 51(4): 677-684. |
[3] | ANTONACCI P, CHEVALIER S, LEE J, et al. Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities[J]. Electrochimica Acta, 2016, 188: 888-897. |
[4] | DEEVANHXAY P, SASABE T, TSUSHIMA S, et al. Observation of dynamic liquid water transport in the microporous layer and gas diffusion layer of an operating PEM fuel cell by high-resolution soft X-ray radiography[J]. Journal of Power Sources, 2013, 230(230): 38-43. |
[5] | CHUN J H, JO D H, KIM S G, et al. Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks[J]. Renewable Energy, 2012, 48: 35-41. |
[6] | OROGBEMI O M, INGHAM D B, ISMAIL M S, et al. Through-plane gas permeability of gas diffusion layers and microporous layer: Effects of carbon loading and sintering[J]. Journal of the Energy Institute, 2018, 91(2): 270-278. |
[7] | CHUN J H, PARK K T, JO D H, et al. Determination of the pore size distribution of micro porous layer in PEMFC using pore forming agents under various drying conditions[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11148-11153. |
[8] | FAZELI M, HINEBAUGH J, BAZYLAK A. Incorporating embedded microporous layers into topologically equivalent pore network models for oxygen diffusivity calculations in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Electrochimica Acta, 2016, 216: 364-375. |
[9] | SUN P. A Dirichlet/Robin iteration-by-subdomain method for an anisotropic, nonisothermal two-phase transport model of PEM fuel cell with micro-porous layer[J]. Journal of Computational and Applied Mathematics, 2014, 270: 241-256. |
[10] | KIM K N, KANG J H, LEE S G, et al. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 278: 703-717. |
[11] | ZHANG D, CAI Q, GU S. Three-dimensional la-ttice-Boltzmann model for liquid water transport and oxygen diffusion in cathode of polymer electrolyte membrane fuel cell with electrochemical reaction[J]. Electrochimica Acta, 2018, 262: 282-296. |
[12] | CHEN L, ZHANG R, MIN T, et al. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media[J]. Chemical Engineering Journal, 2018, 349: 428-437. |
[13] | CHEN L, WU G, HOLBY E F, et al. Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 158: 175-186. |
[14] | PAN C, LUO L S, MILLER C T. An evaluation of lattice Boltzmann schemes for porous medium flow simulation[J]. Computers and Fluids, 2006, 35(8/9): 898-909. |
[15] | PARK J, MATSUBARA M, LI X. Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell[J]. Journal of Power Sources, 2007, 173(1): 404-414. |
[16] | D’HUMIRES D, GINZBURG I, KRAFCZYK M, et al. Multiple-relaxation-time lattice Boltzmann models in three dimensions.[J]. Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 437-451. |
[17] | IRINA G, DOMINIQUE D. Multireflection boundary conditions for lattice Boltzmann models[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2003, 68(6): 066614. |
[18] | KIM S H, PITSCHH. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(6): B673-B681. |
[19] | BODLA K K, GARIMELLAS V, MURTHY J Y. 3D reconstruction and design of porous media from thin sections[J]. International Journal of Heat and Mass Transfer, 2014, 73(6): 250-264. |
[20] | TANG T, TENG Q, HE X, et al. A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure[J]. Journal of Microscopy, 2010, 234(3): 262-268. |
[21] | ZENG J, WU W, JIANG F. Smoothed particle hydrodynamics prediction of effective transport coefficients of lithium-ion battery electrodes[J]. Solid State Ionics, 2014, 260: 76-85. |
[22] | WU W, JIANG F. Microstructure reconstruction and characterization of PEMFC electrodes[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15894-15906. |
[23] | FENG J W, LI C F, CEN S, et al. Statistical reconstruction of two-phase random media[J]. Computers and Structures, 2014, 137: 78-92. |
[24] | SALOMOV U R, CHIAVAZZO E, ASINARI P.Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells[J]. Computers and Mathematics with Applications, 2014, 67(2): 393-411. |
[25] | SIDDIQUE N A, LIU F. Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer[J]. Electrochimica Acta, 2010, 55(19): 5357-5366. |
[26] | CHEN L, KANG Q, PAWAR R, et al. Pore-scale prediction of transport properties in reconstructed nanostructures of organic matter in shales[J]. Fuel, 2015, 158: 650-658. |
[27] | PANT L M, MITRA S K, SECANELLM. Stochastic reconstruction using multiple correlation functions with different-phase-neighbor-based pixel selection[J]. Physical Review E, 2014, 90(2): 023306. |
[28] | DUECK G, SCHEUER T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing[J]. Journal of Computational Physics, 1990, 90(1): 161-175. |
[29] | YEONG C L Y, TORQUATO S. Reconstructing random media[J]. Physical Review E, 1998, 57(1): 495-506. |
[30] | IZZO J R, JOSHI A S, GREW K N, et al. Nondestructive reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 nm resolution[J]. Journal of The Electrochemical Society, 2008, 155(5): B504-B508. |
[31] | STEPHENSON D E, WALKER B C, SKELTON C B, et al. Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes[J]. Nature Neuroscience, 2011, 158(7): A781-A789. |
[32] | IHONEN J, JAOUEN F, LINDBERGH G, et al. Investigation of mass-transport limitations in the solid polymer fuel cell cathode: II. Experimental[J]. Journal of the Electrochemical Society, 2002, 149(4): A448-A454. |
[33] | BECKER J, WIEGMANN A, SCHULZV. Design of fibrous filter media based on the simulation of pore size measures[C]∥International Conference and Exhibition for Filtration and Separation Technology (Filtech). Wiesbaden: Filtech Exhibitions Germany, Düsseldorf, 2007: 71-78. |
[34] | SCHULZ V P, BECKER J, WIEGMANN A, et al. Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach[J]. Journal of the Electrochemical Society, 2007, 154(4): B419-B426. |
[35] | PANT L M, SABHARWAL M, MITRA S, et al. Stochastic reconstruction and transport simulation of PEFC catalyst layers[J]. Ecs Transactions, 2015, 69(17): 105-120. |
[36] | HAO L, CHENG P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas di-ffusion layers[J]. Journal of Power Sources, 2009, 186(1): 104-114. |
[37] | HWANG J J, CHEN C K, SAVINELL R F, et al. A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC[J]. Journal of Applied Electrochemistry, 2004, 34(2): 217-224. |
[38] | PANT L M, MITRA S K, SECANELL M. Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers[J]. Journal of Power Sources, 2012, 206: 153-160. |
[39] | PEI P, LI Y, XU H, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173: 366-385. |
[40] | MANGAL P, PANT L M, CARRIGYN, et al. Experimental study of mass transport in PEMFCs: Through plane permeability and molecular diffusivity in GDLs[J]. Electrochimica Acta, 2015, 167: 160-171. |
[41] | AHMADI M M, MOHAMMADI S, HAYATIA N. Analytical derivation of tortuosity and permeability of monosized spheres: A volume averaging approach[J]. Physical Review E, 2011, 83(2 Pt 2): 026312. |
[42] | ZICK A A, HOMSY G M. Stokes flow through periodic arrays of spheres[J]. Journal of Fluid Mechanics, 1982, 115(1): 13-26. |
[43] | PARK S, LEE J W, POPOV BN. Effect of PTFE content in microporous layer on water management in PEM fuel cells[J]. Journal of Power Sources, 2008, 177(2): 457-463. |
[44] | SIEGEL C, BANDLAMUDI G, HEINZEL A. Systematic characterization of a PBI/H3PO4 sol-gel membrane-modeling and simulation[J]. Journal of Power Sources, 2011, 196(5): 2735-2749. |
[1] | 张亦杰,马乃恒,王浩伟. 常温常压铝水反应制备氢能源新材料的研究[J]. 上海交通大学学报(自然版), 2014, 48(03): 427-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||