上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (02): 215-221.
段振刚1,杜东海1,张乐福1,孟凡江2,石秀强2
收稿日期:
2014-12-22
出版日期:
2016-02-29
发布日期:
2016-02-29
基金资助:
DUAN Zhengang1,DU Donghai1,ZHANG Lefu1,MENG Fanjiang2,SHI Xiuqiang2
Received:
2014-12-22
Online:
2016-02-29
Published:
2016-02-29
摘要: 摘要: 通过模拟压水堆一回路水环境,研究了溶液温度和溶氧量(DO)对304和316L不锈钢高温电化学腐蚀行为的影响.结果表明:随着溶液温度升高,在304和316L不锈钢表面所形成的氧化膜的保护性能降低;随着DO升高,304和316L不锈钢的自腐蚀电位升高,自腐蚀电流密度降低,钝化区缩小;304和316L不锈钢表面形成了双层氧化膜,外层氧化膜颗粒尺寸和颗粒间隙随着温度的升高而增大,随着DO增加而减小;在所用实验条件下,316L不锈钢表现出比304更优异的抗腐蚀性能.
中图分类号:
段振刚1,杜东海1,张乐福1,孟凡江2,石秀强2. 304和316L不锈钢的高温电化学腐蚀行为[J]. 上海交通大学学报(自然版), 2016, 50(02): 215-221.
DUAN Zhengang1,DU Donghai1,ZHANG Lefu1,MENG Fanjiang2,SHI Xiuqiang2. Electrochemical Investigation of Corrosion Behavior of 304 and 316L Stainless Steels in HighTemperature Water [J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 215-221.
[1]BOSCH R W, FRON D, CELIS J P. Electrochemistry in light water reactors: Reference electrodes, measurement, corrosion and tribocorrosion issues[M]. Richmond,USA: Woodhead Publishing Ltd Press, 2007. [2]WILDGOOSE G G, GIOVANELLI D, LAWRENCE N S, et al. Hightemperature electrochemistry: A review [J]. Electroanalysis, 2004, 16(6): 421433. [3]韩恩厚, 王俭秋, 吴欣强, 等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制 [J]. 金属学报, 2010,46(11):13791390. HAN Enhou, WANG Jianqiu, WU Xinqiang, et al. Corrosion mechanisms echanisms of stainless steel and nickel base alloys in high temperature high pressure water[J]. Acta Metallurgica Sinica, 2010, 46(11):13791390. [4]GREELEY R S, SMITH JR W T, STOUGHTON R W, et al. Electromotive force studies in aqueous solutions at elevated temperatures.I.The standard potential of the silver chloride electrode1 [J]. Journal of Physical Chemistry, 1960, 64(5): 652657. [5]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrMo alloy 625 in high temperature, hydrogenated water [J]. Corrosion Science, 2003, 45(7): 15951618. [6]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrFe alloy 600 in high temperature, hydrogenated water [J]. Corrosion Science, 2006, 48(2): 498521. [7]ZIEMNIAK S E, HANSON M, SANDER P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corrosion Science, 2008, 50(9): 24652477. [8]SUN H, WU X, HAN E H. Effects of temperature on the protective property, structure and composition of the oxide film on alloy 625 [J]. Corrosion Science, 2009, 51(11): 25652572. [9]SUN H, WU X, HAN E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corrosion Science, 2012, 59: 334342. [10]HUANG J, WU X, HAN E H. Electrochemical properties and growth mechanism of passive films on alloy 690 in hightemperature alkaline environments [J]. Corrosion Science, 2010, 52(10): 34443452. [11]PARDO A, MERINO M C, COY A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corrosion Science, 2008, 50(3): 780794. [12]LU Y C, CLAYTON C R, BROOKS A R. A bipolar model of the passivity of stainless steels.II. The influence of aqueous molybdate [J]. Corrosion Science, 1989, 29(7): 863880. [13]CLAYTON C R, LU Y C. A bipolar model of the passivity of stainless steels.III. The mechanism of MoO42formation and incorporation [J]. Corrosion Science, 1989, 29(7): 881898. [14]FENG Z, CHENG X, DONG C, et al. Passivity of 316L stainless steel in borate buffer solution studied by MottSchottky analysis, atomic absorption spectrometry and Xray photoelectron spectroscopy [J]. Corrosion Science, 2010, 52(11): 36463653. [15]SUN H, WU X, HAN E H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution [J]. Corrosion Science, 2009, 51(12): 28402847. [16]BAZAN J, ARVIA A. The diffusion of ferroand ferricyanide ions in aqueous solutions of sodium hydroxide [J]. Electrochimica Acta, 1965,10(10): 10251032. |
[1] | 陈强, 朱金伟, 赵宇辰, 刘伟, 张晓宾, 吴渊, 刘雄军, 王辉, 吕昭平. 难熔高熵合金抗氧化性能研究现状[J]. 空天防御, 2024, 7(6): 96-103. |
[2] | 姚冬旭, 余兴, 顾昊, 李嘉豪, 刘雯, 李睿. 耐高温透波氮化硅基陶瓷材料研究进展[J]. 空天防御, 2024, 7(6): 46-57. |
[3] | 陈志勇. 高声速飞行器用高温钛合金研究进展与发展趋势[J]. 空天防御, 2024, 7(6): 38-45. |
[4] | 罗艳梅, 刘江峰, 窦怡彬, 王文芳, 刘陆广, 许斌, 钟正祥. 耐高温有机硅树脂示温涂层的制备[J]. 空天防御, 2024, 7(3): 79-85. |
[5] | 李 想, 刘 晓, 李 森, 刘程程, 刘晓彬, 高 爽. 玻璃纤维增强乙烯基酯复合材料耐海水腐蚀寿命预测[J]. 海洋工程装备与技术, 2023, 10(4): 107-110. |
[6] | 毕航铭. 316L不锈钢管道腐蚀原因分析及预防措施[J]. 海洋工程装备与技术, 2023, 10(4): 30-35. |
[7] | 特日格乐, 张玉妥, . 双时效处理对15-5PH不锈钢强度-韧性的改善[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 270-279. |
[8] | 战科江, 李海汀, 王淼, 周锋, 赵金城. 冷弯不锈钢方矩管腹板压跛极限承载力[J]. 上海交通大学学报, 2023, 57(12): 1619-1630. |
[9] | 王约翰, 南晓红, 欧阳洪生, 郭智恺, 胡斌, 王如竹. 绿色工质HP-1高温热泵系统中膨胀阀开度与流量匹配特性[J]. 上海交通大学学报, 2023, 57(10): 1367-1377. |
[10] | 王锐, 薛鸿祥, 袁昱超, 唐文勇. 高温环境下海洋平台防爆墙结构冲击动力响应特性研究[J]. 上海交通大学学报, 2021, 55(8): 968-975. |
[11] | 刘昶江, 赵兵, 陈务军. 不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验[J]. 上海交通大学学报, 2021, 55(4): 387-393. |
[12] | 蒋怡涵, 吴佳松, 王武荣, 韦习成. 模具温升对22MnB5硼钢裸板高温摩擦磨损特性的影响[J]. 上海交通大学学报, 2021, 55(3): 258-264. |
[13] | 栾建泽,那景新,慕文龙,谭伟,陈宏利. 低速加载对铝合金-玄武岩纤维增强树脂复合材料粘接接头失效的影响[J]. 上海交通大学学报, 2020, 54(11): 1200-1208. |
[14] | 姜勇,李洋,周阳,巩建鸣. 奥氏体不锈钢双极板的低温超饱和气体渗碳表面改性[J]. 上海交通大学学报(自然版), 2019, 53(2): 247-252. |
[15] | 陈明明, 陈秀华, 张大旭, 伍海辉, 郭洪宝, 龚景海. 平纹叠层SiC/SiC复合材料室温和高温拉伸行为与破坏机理[J]. 上海交通大学学报, 2019, 53(1): 11-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||