上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (1): 86-91.
钱鹏,易宏,李英辉
收稿日期:
2013-04-02
Received:
2013-04-02
摘要:
中图分类号:
钱鹏,易宏,李英辉. 艏柱对高速船顶浪中水动力性能影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 86-91.
QIAN Peng,YI Hong,LI Yinghui. Influence of Bowshape on Hydrodynamic Performance of High Speed Vessels in Head Seas[J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 86-91.
[1]Yeung R W, Wan H. Multihull and surfaceeffect ship configuration design: A framework for powering minimization [J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130 (3): 03100519. [2]Wilson W, Gorski J, Kandasamy M, et al. Hydrodynamic shape optimization for naval vehicles [C]∥ High Performance Computing Modernization Program Users Group Conference (HPCMPUGC). USA: IEEE, 2010: 1417. [3]Tahara Y, Peri D, Campana E F, et al. Single and multiobjective design optimization of a fast multihull ship: Numerical and experimental results [J]. Journal of Marine Science and Technology, 2011, 16(4): 412433. [4]Xie L, Feng B, Liu Z. Automatic optimization of highspeed hull forms using CFD [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(6): 129132. [5]张宝吉, 马坤. 基于Rankine源法的船体线型优化设计[J]. 上海交通大学学报, 2010, 44(10): 14141417. ZHANG Baoji, MA Kun. Optimization design of hull lines based on rankine source method [J]. Journal of Shanghai Jiaotong University, 2010, 44(10): 14141417. [6]Zalek S F, Parsons M G, Beck R F. Naval hull form multicriterion hydrodynamic optimization for the conceptual design phase [J]. Journal of Ship Research, 2009, 53(4): 199213. [7]Maki K J, Doctors L J, Scher R M, et al. Conceptual design and hydrodynamic analysis of a highspeed sealift adjustablelength trimaran [J]. TransactionsSociety of Naval Architects and Marine Engineers, 2009, 116: 1639. [8]Gelling J L, Keuning J A. Recent developments in the design of fast ships [J]. Ship Science and Technology, 2011, 5(9): 5768. [9]朱仁传, 郭海强, 缪国平. 一种基于CFD理论船舶附加质量与阻尼的计算方法[J]. 上海交通大学学报, 2009, 43(2): 198203. ZHU Renchuan, GUO Haiqiang, MIAO Guoping. A computational method for evaluation of added mass and damping of ship based on CFD theory [J]. Journal of Shanghai Jiaotong University, 2009, 43(2): 198203. [10]Joncquez S A, Andersen P, Bingham H B. A comparison of methods for computing the added resistance [J]. Journal of Ship Research, 2012, 56(2): 106119. [11]Noblesse F, Delhommeau G, Yang C, et al. Analytical bow waves for fine ship bows with rake and flare [J]. Journal of Ship Research, 2011, 55(1): 118. [12]Veen D, Gourlay T. A combined strip theory and smoothed particle hydrodynamics approach for estimating slamming loads on a ship in head seas [J]. Ocean Engineering, 2012, 43(4): 6471. [13]Salvesen N, Tuck O E, Faltinsen O M. Ship motions and sea loads [M/OL]. USA: Society of Naval Architects and Marine Engineers, 1970 [20130402]. http:∥trid.trb.org/view.aspx?id=495. [14]Salvesen N. Added resistance of ships in waves [J]. Journal of Hydrodynamics, 1978, 12(1): 2434 . [15]Zwart P J, Godin P G, Penrose J, et al. Simulation of unsteady freesurface flow around a ship hull using a fully coupled multiphase flow method [J]. Journal of Marine Science and Technology, 2008, 13(4): 346355. [16]Weymouth G D, Wilson R V, Stern F. RANS computational fluid dynamics predictions of pitch and heave ship motions in head seas [J]. Journal of Ship Research, 2005, 49(2): 8097. [17]Wellicome J F, Temarel P, Molland A F, et al. Experimental measurements of the seakeeping characteristics of fast displacment catamarans in longcrested headseas [EB/OL]. (20120608) [20130402]. http:∥eprints.soton.ac.uk/id/eprint/46427. [18]Keuning J A, Toxopeus S, Pinkster J. The effect of bowshape on the seakeeping performance of a fast monohull [C]∥ FAST 2001 The 6th International Conference on Fast Sea Transportation. London, UK: Royal Institution of Naval Architects, 2001: 197212. |
[1] | 秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158. |
[2] | 李鹏, 王超, 孙华伟, 郭春雨. 潜艇阻力及流场数值仿真策略优化分析[J]. 上海交通大学学报, 2022, 56(4): 506-515. |
[3] | 宋邓强, 周彬, 申兴旺, 鲍劲松, 周亚勤. 面向船舶分段制造过程的动态知识图谱建模方法[J]. 上海交通大学学报, 2021, 55(5): 544-556. |
[4] | 范厚明, 于佳琪, 马梦知, 蒋晓丹, 慈吉利, 翟志伟. 模糊时间窗下多船型不定期船调度与航速联合优化[J]. 上海交通大学学报, 2021, 55(3): 297-310. |
[5] | 王瑞昌, 陈志华, 明新国. 基于改进模糊逻辑控制的并联式船舶动力系统能量管理[J]. 上海交通大学学报, 2021, 55(10): 1188-1196. |
[6] | 王运龙, 姜云博, 管官, 邢佳鹏, 于光亮. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
[7] | 贺宏伟, 邹早建, 曾智华. 欠驱动水面船舶的自适应神经网络-滑模路径跟随控制[J]. 上海交通大学学报, 2020, 54(9): 890-897. |
[8] | 薛晗,邵哲平,潘家财,张锋. 基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测[J]. 上海交通大学学报, 2020, 54(4): 421-429. |
[9] | 王瑞昌,陈志华,明新国. 船舶动力系统全生命周期绿色设计的评价方法[J]. 上海交通大学学报, 2020, 54(3): 256-264. |
[10] | 宋科委,郭春雨,龚杰,李平,王伟. 阻流板对双桨船阻力和伴流场影响数值研究[J]. 上海交通大学学报, 2019, 53(8): 957-964. |
[11] | 黄福祥, 李隶辉, 阴炳钢, 刘国锋, 陈金铭. FPSO舷侧立管碰撞损伤与风险研究[J]. 海洋工程装备与技术, 2019, 6(2): 487-493. |
[12] | 杨荣武,许劲松,王鑫. 船舶自主避碰的慎思型轨迹规划[J]. 上海交通大学学报, 2019, 53(12): 1411-1419. |
[13] | 孙凯强, 巴永江, 张义明. 臭氧脱硫脱硝技术在远洋船舶上的应用研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 282-286. |
[14] | 陈松坤,王德禹. 基于神经网络的蒙特卡罗可靠性分析方法[J]. 上海交通大学学报(自然版), 2018, 52(6): 687-692. |
[15] | 宋杰, 马宁, 李昱浩, 葛嘉垚. 船舶设备数据库软件系统开发[J]. 海洋工程装备与技术, 2018, 5(5): 359-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||