上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (8): 957-964.doi: 10.16183/j.cnki.jsjtu.2019.08.010
宋科委,郭春雨,龚杰,李平,王伟
出版日期:
2019-08-28
发布日期:
2019-09-10
通讯作者:
郭春雨,男,教授,博士生导师,电话(Tel.): 15046051672;E-mail: guochunyu_heu@outlook.com.
作者简介:
宋科委,(1991-),男,山东省菏泽市人,博士生,主要从事船舶推进与节能研究.
基金资助:
SONG Kewei,GUO Chunyu,GONG Jie,LI Ping,WANG Wei
Online:
2019-08-28
Published:
2019-09-10
摘要: 基于RANS(Reynolds-averaged Navier-Stokes)方法针对安装了3种不同深度阻流板的DTMB5415船模进行数值计算,以研究阻流板对船舶阻力以及伴流场的影响.分析了安装阻流板前后的船舶水动力性能,并探讨了船艉波形、船身压力以及轴向标称伴流场的变化.研究结果表明:阻流板的安装能够降低DTMB5415的阻力,平均减阻率可达 4.19%;船体虚长度的增加以及方尾船尾流场的改善是船模总阻力降低的主要原因;阻流板的安装增大了船舶尾部的边界层厚度以及轴向标称伴流,当弗劳德数Fr=0.35 时,d/LPP=0.0015(d为阻流根深度,LPP为船长)的桨盘面平均伴流分数增大了 11.9%.
中图分类号:
宋科委,郭春雨,龚杰,李平,王伟. 阻流板对双桨船阻力和伴流场影响数值研究[J]. 上海交通大学学报, 2019, 53(8): 957-964.
SONG Kewei,GUO Chunyu,GONG Jie,LI Ping,WANG Wei. Numerical Study on the Effect of Interceptors on the Resistance and Wake Field of Twin-Screw Ship[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 957-964.
[1]AMACHER R, LIECHTI T C, PFISTER M, et al. Wave-reducing stern flap on ship convoys to protect riverbanks[J]. Naval Engineers Journal, 2015, 127(1): 95-102. [2]蒋一, 孙寒冰, 邹劲, 等. 变角度尾压浪板对断级滑行艇阻力性能的影响[J]. 上海交通大学学报, 2017, 51(3): 320-325. JIANG Yi, SUN Hanbing, ZOU Jin, et al. Influence of angle-variable stern flap on resistance performance of stepped planing hull[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 320-325. [3]KIM D H, SEO I D, RHEE K P, et al. A model test study on the effect of the stern interceptor for the reduction of the resistance and trim angle for wave-piercing hulls[J]. Journal of the Society of Naval Architects of Korea, 2015, 52(6): 485-493. [4]KARAFIATH G. The effect of stern wedges on ship powering performance[J]. Naval Engineers Journal, 1987, 99(3): 27-38. [5]邓锐, 黄德波, 周广利, 等. 阻流板水动力机理的初步计算研究[J]. 船舶力学, 2012, 16(7): 740-749. DENG Rui, HUANG Debo, ZHOU Guangli, et al. Preliminary numerical research of the hydrodynamic mechanism of interceptor[J]. Journal of Ship Mechanics, 2012, 16(7): 740-749. [6]MANSOORI M, FERNANDES A C. Hydrodyna-mics of the interceptor on a 2-D flat plate by CFD and experiments[J]. Journal of Hydrodynamics, 2015, 27(6): 919-933. [7]GHASSEMI H, MANSOURI M, ZAFERANLOUEI S. Interceptor hydrodynamic analysis for handling trim control problems in the high-speed crafts[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(11): 2597-2618. [8]MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40-51. [9]MANSOORI M, FERNANDES A C. Interceptor and trim tab combination to prevent interceptor’s unfit effects[J]. Ocean Engineering, 2017, 134: 140-156. [10]黄胜, 单铁兵. 附体对船尾伴流场的影响研究[J]. 哈尔滨工程大学学报, 2008, 29(11): 1147-1153. HUANG Sheng, SHAN Tiebing. The effects of appendages on ship’s wakes[J]. Journal of Harbin Engineering University, 2008, 29(11): 1147-1153. [11]王展智, 熊鹰, 刘志华, 等. 双臂轴支架的剖面形状和安装角度对船舶伴流场的影响[J]. 中国舰船研究, 2012, 07(4): 23-29. WANG Zhanzhi, XIONG Ying, LIU Zhihua, et al. Effects of twin shaft bracket section profile and installation angle on nominal wake field [J]. Chinese Journal of Ship Research, 2012, 07(4): 23-29. [12]王展智, 熊鹰, 孙海涛, 等. 双桨船附体阻力尺度效应[J]. 上海交通大学学报, 2015, 49(2): 255-261. WANG Zhanzhi, XIONG Ying, SUN Haitao, et al. Scale effect of appendage resistance of twin-screw ship[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 255-261. [13]OLIVIERI A, PISTANI F, AVANZINI A, et al. Towing tank experiments of resistance, sinkage and trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model[D]. Iowa City: The University of Iowa, 2001. [14]GUI L, LONGO J, STERN F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512[J]. Experiments in Fluids, 2001, 31(3): 336-346. [15]MANSOORI M, FERNANDES A C. Hydrodynamics of the interceptor analysis via both ultra-reduced model test and dynamic CFD simulation[J]. Journal of Offshore Mechanics & Arctic Engineering, 2017, 139(2): 0211101. [16]REICHARDT. Vollstndige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen[J]. Zamm-Journal of Applied Mathematics & Mechanics, 1951, 31(7): 208-219. [17]LARSSON L, STERN F, VISONNEAU M. CFD in ship hydrodynamics—Results of the Gothenburg 2010 workshop[C]//MARINE 2011, IV International Conference on Computational Methods in Marine Engineering. Dordrecht: Springer, 2013: 237-259. |
[1] | 张晓嵩,万德成. 运动船舶周围为什么会出现大范围白色泡沫流动?[J]. 上海交通大学学报, 2021, 55(Sup.1): 65-66. |
[2] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[3] | 叶礼裕, 王超, 郭春雨, 常欣. 集中冰载工况下的桨叶边缘强度校核方法[J]. 上海交通大学学报, 2020, 54(1): 10-19. |
[4] | 李金龙,尤云祥,陈科. 一种几何VOF方法在液舱晃荡流动模拟中的应用[J]. 上海交通大学学报, 2019, 53(8): 943-951. |
[5] | 刘东喜,庄宿国,王晋,尤云祥. 矩形舱内三层液体晃荡特性的数值分析[J]. 上海交通大学学报, 2019, 53(8): 952-956. |
[6] | 张晓慧,柏君励,顾解忡,马宁. 一种不可压缩二维流动的显式逐次超松弛并行算法[J]. 上海交通大学学报, 2019, 53(6): 681-687. |
[7] | 赵东亚,胡志强,陈刚. 浮式液化天然气系统液体装载船体的耦合响应[J]. 上海交通大学学报, 2019, 53(5): 540-548. |
[8] | 刘义,邹早建,郭海鹏. 基于两种螺旋桨建模方法的全附体船模斜拖试验数值模拟[J]. 上海交通大学学报(自然版), 2019, 53(4): 423-430. |
[9] | 欧珊,毛筱菲,刘祖源,黄天奇,余泽爽. 基于OpenFOAM的破损船舶横摇阻尼[J]. 上海交通大学学报(自然版), 2019, 53(3): 305-314. |
[10] | 李清,于汉,杨德庆. 多类振动噪声源下舰船水下噪声的耦合声场计算方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 161-169. |
[11] | 余宏淦,黄小平,张永矿. 基于谱分析和裂纹扩展方法的舱口角隅疲劳寿命预报方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 153-160. |
[12] | 郭春雨1,刘恬1,赵庆新1,郝浩浩2. 短波中标称伴流场特性分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 170-178. |
[13] | 于鹏垚,赵勇,王天霖,甄春博,苏绍娟. 基于半解析砰击模型的弹性楔形体入水冲击分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 179-187. |
[14] | 陈敏, 陈科, 尤云祥, 李飞. 南海八号深水半潜式平台内孤立波载荷预报[J]. 上海交通大学学报, 2019, 53(1): 42-48. |
[15] | 姚慧岚, 张怀新. 较低雷诺数下ITTC尺度效应换算方法的改进[J]. 上海交通大学学报, 2019, 53(1): 35-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||