上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (8): 943-951.doi: 10.16183/j.cnki.jsjtu.2019.08.008
李金龙,尤云祥,陈科
出版日期:
2019-08-28
发布日期:
2019-09-10
通讯作者:
尤云祥,男,教授,博士生导师,电话(Tel.):021-34202721;E-mail:youyx@sjtu.edu.cn.
作者简介:
李金龙(1988-),男,江苏省扬州市人,博士生,研究方向为两相流.
基金资助:
LI Jinlong,YOU Yunxiang,CHEN Ke
Online:
2019-08-28
Published:
2019-09-10
摘要: isoAdvector 是一种新的几何 VOF (Volume of Fluid)方法,虽然克服了传统几何 VOF 方法难以适用于三维空间任意多面体网格的缺点,但不能直接用来模拟涉及动网格技术的液舱晃荡.为此,引入了运动通量修正,并提出了面-界面交线运动修正,使得修正后的 isoAdvector 方法可以应用到液舱晃荡的模拟中.基于不同的 VOF 方法对非共振、共振受迫晃荡和单次冲击波面进行数值模拟,并将模拟结果与试验结果以及解析解进行了比较.结果表明:相对于代数 VOF 方法,采用修正后的 isoAdvector 方法获得的自由液面位置和整体水动力载荷精度更高;捕捉的波面没有褶皱,能够较好地模拟波面的翻卷和破碎.此外,提出了界面厚度的估计方法,分析了自由液面波高精度提高的原因.
中图分类号:
李金龙,尤云祥,陈科. 一种几何VOF方法在液舱晃荡流动模拟中的应用[J]. 上海交通大学学报, 2019, 53(8): 943-951.
LI Jinlong,YOU Yunxiang,CHEN Ke. Application of a Geometric VOF Method in the Simulations of Sloshing Flow[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 943-951.
[1]洪亮, 朱仁传, 缪国平, 等. 波浪中船体与液舱晃荡耦合运动的时域数值计算[J]. 哈尔滨工程大学学报, 2012, 33(5): 635-641. HONG Liang, ZHU Renchuan, MIAO Guoping, et al. Numerical calculations of ship motions coupled with tank sloshing in time domain based on potential flow theory [J]. Journal of Harbin Engineering University, 2012, 33(5): 635-641. [2]ROENBY J, BREDMOSE H, JASAK H. A computational method for sharp interface advection[J]. Royal Society Open Science, 2016, 3(11): 160405. [3]JOFRE L, LEHMKUHL O, CASTRO J, et al. A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes[J]. Computers & Fluids, 2014, 94: 14-29. [4]MCKEE S, TOM M F, FERREIRA V G, et al. The MAC method[J]. Computers & Fluids, 2008, 37(8): 907-930. [5]TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. [6]LUO H, BAUM J D, LHNER R. On the computation of multi-material flows using ALE formulation[J]. Journal of Computational Physics, 2004, 194(1): 304-328. [7]CHERN M J, VAZIRI N, SYAMSURI S, et al. Pseudospectral solution of three-dimensional nonli-near sloshing in a shallow water rectangular tank[J]. Journal of Fluids and Structures, 2012, 35: 160-184. [8]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. [9]NOH W F, WOODWARD P. SLIC (Simple Line Interface Calculation)[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid. Enschede, Netherlands: Springer, 1976: 330-340. [10]RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2): 112-152. [11]LIU D M, LIN P Z. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal of Computational Physics, 2008, 227(8): 3921-3939. [12]XUE M A, LIN P Z. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. [13]BERBEROVI E, VAN HINSBERG N P, JAKIRLI S, et al. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution[J]. Physical Review E, 2009, 79(3): 036306. [14]ALBADAWI A, DONOGHUE D B, ROBINSON A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28. [15]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. [16]SOUTO-IGLESIAS A, BULIAN G, BOTIA-VERA E. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105: 136-159. [17]DEVOLDER B, RAUWOENS P, TROCH P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM [J]. Coastal Engineering, 2017, 125: 81-94. [18]FALTINSEN O M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow[J]. Journal of Ship Research, 1978, 22(3): 193-202. [19]FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes[J]. Journal of Fluid Mechanics, 2005, 523: 199-218. [20]KARIMI M R, BROSSET L, GHIDAGLIA J M, et al. Effect of ullage gas on sloshing. Part II: Local effects of gas-liquid density ratio[J]. European Journal of Mechanics B/Fluids, 2016, 57: 82-100. |
[1] | 张晓嵩,万德成. 运动船舶周围为什么会出现大范围白色泡沫流动?[J]. 上海交通大学学报, 2021, 55(Sup.1): 65-66. |
[2] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[3] | 叶礼裕, 王超, 郭春雨, 常欣. 集中冰载工况下的桨叶边缘强度校核方法[J]. 上海交通大学学报, 2020, 54(1): 10-19. |
[4] | 刘东喜,庄宿国,王晋,尤云祥. 矩形舱内三层液体晃荡特性的数值分析[J]. 上海交通大学学报, 2019, 53(8): 952-956. |
[5] | 宋科委,郭春雨,龚杰,李平,王伟. 阻流板对双桨船阻力和伴流场影响数值研究[J]. 上海交通大学学报, 2019, 53(8): 957-964. |
[6] | 张晓慧,柏君励,顾解忡,马宁. 一种不可压缩二维流动的显式逐次超松弛并行算法[J]. 上海交通大学学报, 2019, 53(6): 681-687. |
[7] | 赵东亚,胡志强,陈刚. 浮式液化天然气系统液体装载船体的耦合响应[J]. 上海交通大学学报, 2019, 53(5): 540-548. |
[8] | 刘义,邹早建,郭海鹏. 基于两种螺旋桨建模方法的全附体船模斜拖试验数值模拟[J]. 上海交通大学学报(自然版), 2019, 53(4): 423-430. |
[9] | 欧珊,毛筱菲,刘祖源,黄天奇,余泽爽. 基于OpenFOAM的破损船舶横摇阻尼[J]. 上海交通大学学报(自然版), 2019, 53(3): 305-314. |
[10] | 李清,于汉,杨德庆. 多类振动噪声源下舰船水下噪声的耦合声场计算方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 161-169. |
[11] | 余宏淦,黄小平,张永矿. 基于谱分析和裂纹扩展方法的舱口角隅疲劳寿命预报方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 153-160. |
[12] | 郭春雨1,刘恬1,赵庆新1,郝浩浩2. 短波中标称伴流场特性分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 170-178. |
[13] | 于鹏垚,赵勇,王天霖,甄春博,苏绍娟. 基于半解析砰击模型的弹性楔形体入水冲击分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 179-187. |
[14] | 陈敏, 陈科, 尤云祥, 李飞. 南海八号深水半潜式平台内孤立波载荷预报[J]. 上海交通大学学报, 2019, 53(1): 42-48. |
[15] | 姚慧岚, 张怀新. 较低雷诺数下ITTC尺度效应换算方法的改进[J]. 上海交通大学学报, 2019, 53(1): 35-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||