上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 506-515.doi: 10.16183/j.cnki.jsjtu.2020.327
收稿日期:
2020-10-11
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
王超
E-mail:wangchao0104@hrbeu.edu.cn
作者简介:
李 鹏(1992-),男,河南省焦作市人,博士生,从事潜艇水动力性能及流场测试研究.
基金资助:
LI Peng, WANG Chao(), SUN Huawei, GUO Chunyu
Received:
2020-10-11
Online:
2022-04-28
Published:
2022-05-07
Contact:
WANG Chao
E-mail:wangchao0104@hrbeu.edu.cn
摘要:
为探寻不同湍流模型对直航潜艇阻力和流场仿真计算的影响,基于STAR-CCM+平台,以标准潜艇模型Sub-off为几何研究对象,采用有限体积法结合10种湍流模型对Sub-off的水动力及流场特征开展数值仿真研究.首先,以LES-Smagorinsky湍流模型开展网格及时间步长收敛性计算.其次,选定合适的网格方案和时间步长,结合10种湍流模型开展特定工况下的仿真计算.最后,利用甄选好的湍流模型分析Sub-off的流场特征.结果表明:10种湍流模型在潜艇的水动力性能及流场特征的预报方面存在较大差异, LES-Smagorinsky湍流模型不仅能较好地预报潜艇的水动力性能及流场平均量,还能准确预报流场的二次量.
中图分类号:
李鹏, 王超, 孙华伟, 郭春雨. 潜艇阻力及流场数值仿真策略优化分析[J]. 上海交通大学学报, 2022, 56(4): 506-515.
LI Peng, WANG Chao, SUN Huawei, GUO Chunyu. Numerical Simulation Strategy Optimization Analysis of Submarine Resistance and Flow Field[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 506-515.
表5
不同湍流模型的艇体阻力仿真结果
湍流模型 | 总阻力/N | 黏性阻力/N | 黏性阻力占总阻力比值/% | 压差阻力/N | 压差阻力占总阻力比值/% |
---|---|---|---|---|---|
LES-S | 33.617 | 5.322 | 15.8 | 28.295 | 84.2 |
LES-W | 11.727 | 4.551 | 38.8 | 7.716 | 61.2 |
LES-DS | 12.311 | 4.914 | 39.9 | 7.397 | 60.1 |
DES-SA | 34.411 | 4.783 | 13.9 | 29.628 | 86.1 |
DES-EBKE | 32.632 | 4.736 | 14.5 | 27.896 | 85.5 |
DDES | 31.133 | 4.827 | 15.5 | 26.306 | 84.5 |
IDDES | 30.328 | 4.843 | 16.0 | 25.485 | 84.0 |
RANS-k-ω | 34.403 | 5.138 | 14.9 | 29.265 | 85.1 |
RANS-k-ε | 31.137 | 4.772 | 15.3 | 26.365 | 84.7 |
RANS-SA | 35.265 | 4.899 | 13.9 | 30.366 | 86.1 |
[1] | 毕毅, 高霄鹏, 王波, 等. 潜艇水动力噪声的自航模试验技术研究[J]. 海军工程大学学报, 2007, 19(5): 40-43. |
BI Yi, GAO Xiaopeng, WANG Bo, et al. Acoustic test technique for submarine using remote submersible model[J]. Journal of Naval University of Engineering, 2007, 19(5): 40-43. | |
[2] |
PAN Y C, ZHANG H X, ZHOU Q D. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 899-913.
doi: 10.1016/j.ijnaoe.2019.04.002 URL |
[3] |
POSA A, BALARAS E. A numerical investigation of the wake of an axisymmetric body with appendages[J]. Journal of Fluid Mechanics, 2016, 792: 470-498.
doi: 10.1017/jfm.2016.47 URL |
[4] |
YAO H L, ZHANG H X, LIU H T, et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method[J]. Engineering Analysis with Boundary Elements, 2017, 77: 1-9.
doi: 10.1016/j.enganabound.2016.12.012 URL |
[5] | 王超, 郑小龙, 李亮, 等. Y +值对潜艇流场大涡模拟计算精度的影响[J]. 华中科技大学学报(自然科学版), 2015, 43(4): 79-83. |
WANG Chao, ZHENG Xiaolong, LI Liang, et al. Influence of Y + on the calculation of submarine flow field characteristics of LES calculation accuracy [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(4): 79-83. | |
[6] |
FU S, XIAO Z X, CHEN H X, et al. Simulation of wing-body junction flows with hybrid RANS/LES methods[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1379-1390.
doi: 10.1016/j.ijheatfluidflow.2007.05.007 URL |
[7] | 李士强, 肖昌润, 曹植珺. 基于STAR-CCM+的潜艇尾流场及水动力数值分析[J]. 中国舰船研究, 2018, 13(Sup.1): 29-35. |
LI Shiqiang, XIAO Changrun, CAO Zhijun. Numerical analysis of wake flow and hydrodynamics for a submarine based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 13(Sup.1): 29-35. | |
[8] | 李士强, 肖昌润. 基于STAR-CCM+的潜艇舵翼水动力性能研究[J]. 舰船科学技术, 2019, 41(11): 37-42. |
LI Shiqiang, XIAO Changrun. Research on hydrodynamic performance of submarine rudder wing based on STAR-CCM+[J]. Ship Science and Technology, 2019, 41(11): 37-42. | |
[9] | GROVES N, HUANG T, CHANG M. Geometric characteristics of DARAPA Sub-off models[R]. Maryland, USA: David Taylor Naval Ship R&D Center, 1989. |
[10] | LI H, THOMAS T. Summary of DARPA Sub-off experimental program data [R]. Maryland, USA: David Taylor Naval Ship R&D Center, 1998. |
[11] | HUANG T, LIU H, GROVES N, et al. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: The DARPA Sub-off experimental program[J]. [C]//Proceedings of 19th Symposium on Naval Hydrodynamics. Seoul, Korea: National Academic Press, 1992. |
[12] |
KUMAR P, MAHSH K. Large eddy simulation of propeller wake instabilities[J]. Journal of Fluid Mechanics, 2017, 814: 361-396.
doi: 10.1017/jfm.2017.20 URL |
[13] | 胡健, 耿冲, 冯峰. 基于大涡模拟的螺旋桨梢涡数值分析[J]. 华中科技大学学报(自然科学版), 2017, 45(11): 68-73. |
HU Jian, GENG Chong, FENG Feng. Numerical analysis of propeller tip vortex based on large eddy simulation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(11): 68-73. | |
[14] |
SHARIATI S K, MOUSAVIZADEGAN S H. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface[J]. Applied Ocean Research, 2017, 67: 31-43.
doi: 10.1016/j.apor.2017.07.001 URL |
[15] |
STERN F, WILSON R V, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123(4): 793-802.
doi: 10.1115/1.1412235 URL |
[16] | JONES D A, CLARKE D B. Simulation of a wing-body junction experiment using the fluent code[R]. Victoria, Australia: DSTO Platforms Sciences Laboratory, 2005. |
[17] |
ÖLÇMEN S M, SIMPSON R L. Some features of a turbulent wing-body junction vortical flow[J]. International Journal of Heat and Fluid Flow, 2006, 27(6): 980-993.
doi: 10.1016/j.ijheatfluidflow.2006.02.019 URL |
[18] |
ROACHE P J. Quantification of uncertainty in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1997, 29(1): 123-160.
doi: 10.1146/annurev.fluid.29.1.123 URL |
[19] | HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows [C]//Center for Turbulence Research Proceedings of the Summer Program 1988. New York, USA: Standford University Center for Turbulence Research, 1988. |
[1] | 倪问池1,2,康庄1,张橙1,张立健1. 运用修正剪应力输运湍流模型模拟双自由度涡激振动[J]. 上海交通大学学报(自然版), 2017, 51(7): 819-825. |
[2] | 高飞,吕建刚,张仲志,郭劭琰. 组合合页式扑翼在悬停状态下的三维仿真分析[J]. 上海交通大学学报(自然版), 2017, 51(2): 166-. |
[3] | 王凯,孙科,张亮,盛其虎,张学伟. 艏摇对立轴潮流能水轮机的水动力性能影响[J]. 上海交通大学学报(自然版), 2016, 50(04): 563-568. |
[4] | 陈后宝, 李欣, 杨建民, 陈三平, 徐海霞, 陈国建. 双排舱型LNG-FSRU频域内液舱晃荡研究[J]. 海洋工程装备与技术, 2015, 2(4): 244-252. |
[5] | 刘鹏a,苏玉民a,廖煜雷a,郭春雨b. 滑波航行器的水动力试验[J]. 上海交通大学学报(自然版), 2015, 49(02): 239-244. |
[6] | 钱鹏,易宏,李英辉. 艏柱对高速船顶浪中水动力性能影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 86-91. |
[7] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[8] | 董小倩,杨晨俊. 吊舱推进器桨毂间隙影响的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[9] | 熊鹰1,盛立2,杨勇1. 吊舱式推进器偏转工况下水动力性能[J]. 上海交通大学学报(自然版), 2013, 47(06): 956-961. |
[10] | 赖智萌1, 肖龙飞1, 寇雨丰1, 范模2. 新概念深水半潜式生产平台水动力截断试验与数值计算[J]. 上海交通大学学报(自然版), 2013, 47(02): 329-334. |
[11] | 杨琼方a, 王永生a, 张志宏b. 螺旋桨初生空化湍流的多相流数值模拟 [J]. 上海交通大学学报(自然版), 2012, 46(08): 1251-1262. |
[12] | 杨琼方a, 王永生a, 张志宏b. 螺旋桨空化初生的判定和空化斗的数值分析[J]. 上海交通大学学报(自然版), 2012, 46(03): 410-416. |
[13] | 张磊1, 杨建民1, 张艳芳2, 刘培林2, 吕海宁1, 刘建辉2. 南海桁架式深吃水立柱式平台水动力性能[J]. 上海交通大学学报(自然版), 2012, 46(03): 463-467. |
[14] | 涂佳黄, 周岱, 李俊龙. 含 檐 口 双 坡 屋 面 风 压 风 载 的 数 值 模 拟[J]. 上海交通大学学报(自然版), 2012, 46(01): 119-125. |
[15] | 陈祥侨, 涂佳黄, 周岱, 朱忠义, 秦凯. 某大型机场航站楼结构风载体型系数的数值模拟[J]. 上海交通大学学报(自然版), 2011, 45(04): 517-522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||