上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 516-522.doi: 10.16183/j.cnki.jsjtu.2021.088

• 交通运输工程 • 上一篇    下一篇

基于4种长短时记忆神经网络组合模型的畸形波预报

赵勇(), 苏丹   

  1. 大连海事大学 船舶与海洋工程学院, 辽宁 大连 116026
  • 收稿日期:2021-03-18 出版日期:2022-04-28 发布日期:2022-05-07
  • 作者简介:赵 勇(1981-),男,江西省宜春市人,副教授,主要从事船舶与海洋工程智能化研究;E-mail: fluid@126.com.
  • 基金资助:
    国家自然科学基金(51679021);国家留学基金(201906575002)

Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models

ZHAO Yong(), SU Dan   

  1. Naval Architecture and Ocean Engineering College, Dalian Maritime University,Dalian 116026, Liaoning, China
  • Received:2021-03-18 Online:2022-04-28 Published:2022-05-07

摘要:

为提高长短时记忆神经网络对畸形波预报精度,研究了长短时记忆神经网络与卷积神经网络(Convolution Neural Networks, CNN)、经验模式分解(Empirical Mode Decomposition, EMD)、差分自回归移动(Auto-Aggressive Integrated Moving Average, ARIMA)模型以及卡尔曼滤波 (Kalman Filtering,KF)方法4种组合模型预报方法.基于两个单峰型畸形波和一个三姐妹组合型畸形波实验数据,经过数据归一化、模型参数设置及误差评估建立了组合预报模型和预报.结果表明:4种组合模型预报精度在所研究的3个畸形波序列预报中精度都得到了显著提高,其中与CNN组合模型的预报精度最高.组合模型方法为提高畸形波预报精度提供了可行方案.

关键词: 畸形波, 长短时记忆(LSTM), 卷积神经网络(CNN), 经验模式分解(EMD), 差分自回归(ARIMA), 卡尔曼滤波(KF)

Abstract:

In order to improve the prediction accuracy of rogue waves of the long short-term memory (LSTM) neural network, prediction methods of LSTM with convolution neural networks (CNN), empirical mode decomposition (EMD), auto-aggressive integrated moving averagel (ARIMA) model, and Kalman filtering (KF) were studied. Based on the experimental data of the rogue waves of two single-peak and one three combined peaks, prediction models were established and predicted by data normalization, model parameter optimization and error evaluation. The results show that the prediction accuracy of the four combined models is significantly improved in all the three studied conditions, and the combination with the convolutional neural network has the highest prediction accuracy. The combined models provide a feasible scheme for improving the prediction accuracy of freak waves.

Key words: rogue wave, long short-term memory (LSTM), convolutional neural network (CNN), empirical mode decomposition (EMD), auto-aggressive integrated average (ARIMA), Kalman filtering (KF)

中图分类号: