上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 523-531.doi: 10.16183/j.cnki.jsjtu.2020.429
唐耿林1, 李建军1, 李元辉1, 张珑耀2, 朱文峰1()
收稿日期:
2020-12-23
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
朱文峰
E-mail:zhuwenfeng@tongji.edu.cn
作者简介:
唐耿林(1996-),男,湖南省张家界市人,硕士生,主要从事车身数字化设计研究.
基金资助:
TANG Genglin1, LI Jianjun1, LI Yuanhui1, ZHANG Longyao2, ZHU Wenfeng1()
Received:
2020-12-23
Online:
2022-04-28
Published:
2022-05-07
Contact:
ZHU Wenfeng
E-mail:zhuwenfeng@tongji.edu.cn
摘要:
基于包边模型几何尺寸定义胶层填充率,通过有限元-光滑粒子流体动力学(FEM-SPH)法建立含胶包边工艺数值模拟模型,并与含胶包边实验进行对比验证,实现了折边胶直径、离边距、包边厚度对填充率影响的定量研究.研究结果表明:实验所得胶层流动、最终填充状态与数值模拟结果的一致性较好,实验所得胶层填充率与数值模拟结果吻合度较高,以此验证了数值模拟模型的可行性和准确性.进一步分析表明:折边胶直径、离边距、包边厚度对填充率的影响依次减小,并拟合得到填充率关于折边胶直径、离边距、包边厚度等工艺参数的关系式,为车身薄板含胶包边工艺的优化设计提供依据.
中图分类号:
唐耿林, 李建军, 李元辉, 张珑耀, 朱文峰. 基于胶层填充的薄板包边成形数值模拟及实验研究[J]. 上海交通大学学报, 2022, 56(4): 523-531.
TANG Genglin, LI Jianjun, LI Yuanhui, ZHANG Longyao, ZHU Wenfeng. Numerical Simulation and Experimental Research of Sheet Hemming Forming Based on Adhesive Filling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 523-531.
[1] | 王瑞林, 张云飞, 夏朝峰. 四门二盖PVC气泡成因及优化方案[J]. 汽车工艺师, 2019(7): 44-47. |
WANG Ruilin, ZHANG Yunfei, XIA Chaofeng. The causes and solutions of four-door and two-cover PVC air bubbles[J]. Auto Manufacturing Engineer, 2019(7): 44-47. | |
[2] | 高翔, 吕涛. 车门折边胶溢胶问题的解决[J]. 汽车工艺与材料, 2017(3): 35-37. |
GAO Xiang, LV Tao. Solution to the problem of glue overflow in car door folding[J]. Automobile Technology & Material, 2017(3): 35-37. | |
[3] |
LI J J, ZHU W F. Numerical simulation of the roller hemming process based on pressure-viscosity effect[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1): 1023-1039.
doi: 10.1007/s00170-019-04237-5 URL |
[4] |
LE MAOÛT N, MANACH P Y, THUILLIER S. Influence of prestrain on the numerical simulation of the roller hemming process[J]. Journal of Materials Processing Technology, 2012, 212(2): 450-457.
doi: 10.1016/j.jmatprotec.2011.10.008 URL |
[5] | 李维康, 张丽桂. 折边胶泡问题的改善途径及评判标准制定[J]. 粘接, 2016, 37(8): 62-66. |
LI Weikang, ZHANG Ligui. Improving methods and criterion setting of bubble defects in PVC hemming sealer[J]. Adhesion, 2016, 37(8): 62-66. | |
[6] | 毕超君, 华云, 贾鹏鹏, 等. PVC焊缝密封胶起泡问题的解决[J]. 电镀与涂饰, 2017, 36(10): 542-544. |
BI Chaojun, HUA Yun, JIA Pengpeng, et al. A solution to blistering of PVC weld adhesive[J]. Electroplating & Finishing, 2017, 36(10): 542-544. | |
[7] | 朱北芳. 汽车门盖折边处密封胶气泡问题的具体解决方法[J]. 汽车实用技术, 2019(19): 176-178. |
ZHU Beifang. Solutions to the air bubble problem in sealant at the hemming position of the car doors[J]. Automobile Applied Technology, 2019(19): 176-178. | |
[8] | 欧阳义平, 杨启. SPH法数值仿真三维切削破岩和切削力估算[J]. 上海交通大学学报, 2016, 50(1): 84-90. |
OUYANG Yiping, YANG Qi. Numerical simulation of rock cutting in 3D with SPH method and estimation of cutting force[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 84-90. | |
[9] |
WANG S, SHU A P, RUBINATO M, et al. Numerical simulation of non-homogeneous viscous debris-flows based on the smoothed particle hydrodynamics (SPH) method[J]. Water, 2019, 11(11): 2314.
doi: 10.3390/w11112314 URL |
[10] |
ZHANG N B, ZHENG X, MA Q W. Study on wave-induced kinematic responses and flexures of ice floe by Smoothed Particle Hydrodynamics[J]. Computers & Fluids, 2019, 189: 46-59.
doi: 10.1016/j.compfluid.2019.04.020 URL |
[11] | 石秉良, 周孔亢, 张云, 等. 基于SPH算法的驾驶室底部结构对爆炸冲击波响应数值仿真[J]. 机械工程学报, 2016, 52(16): 132-139. |
SHI Bingliang, ZHOU Kongkang, ZHANG Yun, et al. Numerical simulation of the response of vehicle cab bottom shell structure under explosive blast wave based on smoothed particle hydrodynamics[J]. Journal of Mechanical Engineering, 2016, 52(16): 132-139. | |
[12] |
ZHENG Z J, KULASEGARAM S, CHEN P, et al. An efficient SPH methodology for modelling mechanical characteristics of particulate composites[J]. Defence Technology, 2021, 17(1): 135-146.
doi: 10.1016/j.dt.2020.04.003 URL |
[13] |
SONG H W, PAN P F, REN G Q, et al. SPH/FEM modeling for laser-assisted machining of fused silica[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5/6): 2049-2064.
doi: 10.1007/s00170-019-04727-6 URL |
[14] |
MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561.
doi: 10.1002/fld.3671 URL |
[15] | 牛伟龙, 莫蓉, 孙惠斌, 等. 基于光滑粒子流体动力学方法与TANH本构方程的钛合金切屑形态预测[J]. 上海交通大学学报, 2019, 53(5): 624-632. |
NIU Weilong, MO Rong, SUN Huibin, et al. Predication of the titanium alloy’s chip morphology based on TANH constitutive model and smoothed particle hydrodynamic method[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 624-632. | |
[16] |
HU W, GUO G N, HU X Z, et al. A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 402-424.
doi: 10.1016/j.cma.2018.10.049 URL |
[17] | 高耀东, 周同. 基于三维FEM-SPH转换算法的截齿冲击结核体仿真分析[J]. 煤炭学报, 2017, 42(Sup.2): 568-575. |
GAO Yaodong, ZHOU Tong. Numerical simulation and analysis for bit impact on pyrites based on 3D FEM-SPH conversion algorithm[J]. Journal of China Coal Society, 2017, 42(Sup.2): 568-575. |
[1] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||