上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (10): 1554-1566.doi: 10.16183/j.cnki.jsjtu.2023.049
收稿日期:
2023-02-13
修回日期:
2023-04-28
接受日期:
2023-05-19
出版日期:
2024-10-28
发布日期:
2024-11-01
通讯作者:
郑丽冬,硕士生;E-mail:作者简介:
张 良(1985—),博士,副教授,从事智能微电网、V2G信息交互等方向的研究.
基金资助:
ZHANG Liang1, ZHENG Lidong1(), LENG Xiangbiao2, LÜ Ling1, CAI Guowei1
Received:
2023-02-13
Revised:
2023-04-28
Accepted:
2023-05-19
Online:
2024-10-28
Published:
2024-11-01
摘要:
风电、光伏的出力具有随机性、波动性以及间歇性,直接并网将会造成电站发电收益降低和电能并网波动性较大以及风、光弃电量较多等问题,降低碳减排量.抽水蓄能电站的加入可在一定程度上缓解上述问题.因此,针对风-光-抽水蓄能联合发电应用场景进行研究,建立综合考虑联合系统经济收益最大化、系统功率波动最小化以及碳减排量最大化3个目标的多目标优化模型,并通过归一化处理,将多目标问题转换成单一目标问题进行求解.采用能够实现局部搜索与全局搜索自适应调整的灰狼算法,对风电、光伏以及抽水蓄能的并网电量进行优化仿真.仿真结果表明:所建立的模型能够有效提高系统的经济收益,大大降低电能并网波动性.同时,新能源的高效利用也使得联合系统的碳减排能力显著提高,模型具备较高的可行性.
中图分类号:
张良, 郑丽冬, 冷祥彪, 吕玲, 蔡国伟. 基于灰狼算法的风-光-抽水蓄能联合系统多目标优化策略[J]. 上海交通大学学报, 2024, 58(10): 1554-1566.
ZHANG Liang, ZHENG Lidong, LENG Xiangbiao, LÜ Ling, CAI Guowei. Multi-Objective Optimization Strategy for Wind-Photovoltaic-Pumped Storage Combined System Based on Gray Wolf Algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1554-1566.
表2
CEC标准测试函数测试结果
测试函数 | 维度 | 指标 | GWO | PSO | AGWO | 函数最优解 |
---|---|---|---|---|---|---|
F1 | 5 | 平均值 | 1.0586×10-111 | 1.56837×10-75 | 2.8089×10-189 | 0 |
标准差 | 2.0204×10-111 | 4.78018×10-75 | 0 | |||
最优值 | 4.7246×10-117 | 5.66403×10-82 | 2.0224×10-200 | |||
最小运行时间/s | 0.0625 | 0.0938 | 0.0625 | |||
F3 | 5 | 平均值 | 5.1416×10-110 | 3.03639×10-66 | 5.6786×10-185 | 0 |
标准差 | 1.562×10-109 | 9.38151×10-66 | 0 | |||
最优值 | 4.9023×10-120 | 2.03774×10-70 | 2.0189×10-189 | |||
最小运行时间/s | 0.1250 | 0.1250 | 0.0313 | |||
F4 | 10 | 平均值 | 8.206186494 | 6.925003246 | 6.038853119 | 0 |
标准差 | 0.976010289 | 0.14160085 | 0.740366322 | |||
最优值 | 6.25242962 | 6.662404072 | 4.946185531 | |||
最小运行时间/s | 0.1406 | 0.1406 | 0.0938 | |||
F7 | 10 | 平均值 | 0.001194785 | 3.9968×10-15 | 3.9968×10-15 | 0 |
标准差 | 0.003769227 | 0 | 0 | |||
最优值 | 3.9968×10-15 | 3.9968×10-15 | 3.9968×10-15 | |||
最小运行时间/s | 0.0938 | 0.125 | 0.0781 | |||
F5 | 30 | 平均值 | 114.3494578 | 38.2086689 | 0 | 0 |
标准差 | 19.73841416 | 9.941091481 | 0 | |||
最优值 | 94.33174368 | 22.88404825 | 0 | |||
最小运行时间/s | 0.2031 | 0.2188 | 0.1406 | |||
F6 | 30 | 平均值 | 23.30240464 | 4.262098719 | 0.916806479 | 0 |
标准差 | 18.33678485 | 2.204487459 | 0.253678272 | |||
最优值 | 2.041006692 | 2.295927461 | 0.382751422 | |||
最小运行时间/s | 0.3133 | 0.3159 | 0.1560 | |||
F9 | 30 | 平均值 | 1.2887×10-43 | 7.0961×10-12 | 1.58352×10-72 | 0 |
标准差 | 1.49665×10-43 | 1.17089×10-11 | 1.9561×10-72 | |||
最优值 | 5.75044×10-45 | 1.34152×10-13 | 1.41472×10-73 | |||
最小运行时间/s | 0.1563 | 0.2031 | 0.0781 | |||
F2 | 30 | 平均值 | 1.8676×10-154 | 1.85983×10-17 | 6.2139×10-269 | 0 |
标准差 | 5.8446×10-154 | 5.86839×10-17 | 0 | |||
最优值 | 7.8137×10-168 | 5.39049×10-24 | 7.041×10-285 | |||
最小运行时间/s | 0.4063 | 0.4219 | 0.3594 |
[1] | 樊肖杰, 迟永宁, 马士聪, 等. 大规模海上风电接入电网关键技术与技术标准的研究及应用[J]. 电网技术, 2022, 46(8): 2859-2870. |
FAN Xiaojie, CHI Yongning, MA Shicong, et al. Research and application of key technologies and technical standards for large-scale offshore wind farms connecting to power grid[J]. Power System Technology, 2022, 46(8): 2859-2870. | |
[2] | DÍAZ-GONÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable & Sustainable Energy Reviews, 2012, 16(4): 2154-2171. |
[3] | LIU Y, HAO L C, XING Z X, et al. Multi-objective coordinated optimization of power system with wind power accommodation[J]. Energy Reports, 2022, 8: 188-195. |
[4] | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. | |
[5] | JAVED M S, MA T, JURASZ J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192. |
[6] | 周正威, 郝亚群, 张雪映. 基于需求响应的风电-抽水蓄能系统调度模型[J]. 电子科技, 2019, 32(4): 77-80. |
ZHOU Zhengwei, HAO Yaqun, ZHANG Xueying. A dispatch model for wind power and pumped-storage system based on demand response[J]. Electronic Science & Technology, 2019, 32(4): 77-80. | |
[7] | 盛四清, 孙晓霞. 风电-抽水蓄能联合运行优化模型[J]. 电力系统及其自动化学报, 2016, 28(11): 100-103. |
SHENG Siqing, SUN Xiaoxia. Operational optimization model for combined operation of wind power and pumped-storage plant[J]. Proceedings of the CSU-EPSA, 2016, 28(11): 100-103. | |
[8] | 王博, 詹红霞, 张勇, 等. 考虑风电不确定性的风蓄火联合优化经济调度研究[J]. 电力工程技术, 2022, 41(1): 93-100. |
WANG Bo, ZHAN Hongxia, ZHANG Yong, et al. Combined optimal economic dispatch of wind-storage-fire considering wind power uncertainty[J]. Electric Power Engineering Technology, 2022, 41(1): 93-100. | |
[9] | 高洁. 抽水蓄能—光伏—风电联合优化运行研究[J]. 水电与抽水蓄能, 2020, 6(5): 25-29. |
GAO Jie. A research on operation of the pumped-storage, photovoltaic and wind power hybrid system[J]. Hydropower & Pumped Storage, 2020, 6(5): 25-29. | |
[10] | ZHANG S S, YANG W J, LI X D, et al. Economic evaluation of wind-PV-pumped storage hybrid system considering carbon emissions[J]. Energy Reports, 2022, 8: 1249-1258. |
[11] | 马实一, 李建成, 段聪, 等. 基于电力市场背景的风-光-抽水蓄能联合优化运行[J]. 智慧电力, 2019, 47(8): 43-49. |
MA Shiyi, LI Jiancheng, DUAN Cong, et al. Joint operation optimization of wind-photovoltaic-pumped hydro storage based on electricity market[J]. Smart Power, 2019, 47 (8): 43-49. | |
[12] | ZHANG L, GUO H L, DA C Z, et al. Optimization scheduling model and method for wind-PV-pumped joint operation in high proportion renewable energy base[J]. IOP Conference Series: Earth & Environmental Science, 2020, 512(1): 012017. |
[13] | 王红亮, 佘金鑫. 联合互补发电系统优化策略研究[J]. 东北电力技术, 2021, 42(8): 20-24. |
WANG Hongliang, SHE Jinxin. Research on optimization strategy of joint complementary generation system[J]. Northeast Electric Power Technology, 2021, 42(8): 20-24. | |
[14] | 沈琛云, 王明俭, 李晓明. 基于风-光-蓄-火联合发电系统的多目标优化调度[J]. 电网与清洁能源, 2019, 35(11): 74-82. |
SHEN Chenyun, WANG Mingjian, LI Xiaoming. Multi-objective optimal dispatch based on wind-solar-pumped storage thermal combined power system[J]. Power System & Clean Energy, 2019, 35(11): 74-82. | |
[15] | 刘天, 蒋成成, 魏云冰. 风-光-抽水蓄能联合发电系统模型的优化研究[J]. 电工技术, 2021(18): 63-65. |
LIU Tian, JIANG Chengcheng, WEI Yunbing. Study on optimization of wind-light-pumped storage combined power generation system model[J]. Electric Engineering, 2021(18): 63-65. | |
[16] | 周脉玉, 邵春峰, 隋秀春. “新能源+抽蓄”模式下抽水蓄能电站的价格形成机制研究[J]. 中国市场, 2018(6): 125-127. |
ZHOU Maiyu, SHAO Chunfeng, SUI Xiuchun. Study on price formation mechanism of pumped storage power station under the mode of “new energy+pumping storage”[J]. China Market, 2018 (6): 125-127. | |
[17] | 李树林, 戴嘉彤, 董海鹰, 等. 考虑相关性的风光抽蓄互补发电系统优化运行[J]. 电力系统及其自动化学报, 2019, 31(11): 92-102. |
LI Shulin, DAI Jiatong, DONG Haiying, et al. Optimal operation of wind-photovoltaic-pumped storage joint power generation system considering correlations[J]. Proceedings of the CSU-EPSA, 2019, 31 (11): 92-102. | |
[18] | HUANG H Y, ZHOU M, ZHANG L J, et al. Joint generation and reserve scheduling of wind-solar-pumped storage power systems under multiple uncertainties[J]. International Transactions on Electrical Energy Systems, 2019, 29(7): e12003. |
[19] | LI Y, LI O T, WU F, et al. Coordinated multi-objective capacity optimization of wind-photovoltaic-pumped storage hybrid system[J]. Energy Reports, 2022, 8: 1303-1310. |
[20] | ZHAO G, WAN C X, ZUO W Q, et al. Research on multiobjective optimal operation strategy for wind-photovoltaic-hydro complementary power system[J]. International Journal of Photoenergy, 2022, 2022: 1-23. |
[21] | LI X M, YU X P, GAO Z. Research on the optimal strategy of pumped storage power station to provide multiple time-scale reserves[J]. Journal of Physics: Conference Series, 2021, 2108(1): 012052. |
[22] | 刘忠, 陈星宇, 邹淑云, 等. 计及碳排放的风-光-抽水蓄能系统容量优化配置方法[J]. 电力系统自动化, 2021, 45(22): 9-18. |
LIU Zhong, CHEN Xingyu, ZOU Shuyun, et al. Optimal capacity configuration method for wind-photovoltaic-pumped-storage system considering carbon emission[J]. Automation of Electric Power Systems, 2021, 45(22): 9-18. | |
[23] | 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127-133. |
ZHU Ye, LAN Zhenbo, WEI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection & Control, 2019, 47 (10): 127-133. | |
[24] | 张立辉, 戴谷禹, 聂青云, 等. 碳交易机制下计及用电行为的虚拟电厂经济调度模型[J]. 电力系统保护与控制, 2020, 48(24): 154-163. |
ZHANG Lihui, DAI Guyu, NIE Qingyun, et al. Economic dispatch model of virtual power plant considering electricity consumption under the carbon trading mechanism[J]. Power System Protection & Control, 2020, 48 (24): 154-163. | |
[25] | 胡泽春, 丁华杰, 孔涛. 风电—抽水蓄能联合日运行优化调度模型[J]. 电力系统自动化, 2012, 36(2): 36-41. |
HU Zechun, DING Huajie, KONG Tao. A joint daily operational optimization model for wind power and pumped-storage plant[J]. Automation of Electric Power Systems, 2012, 36 (2): 36-41. | |
[26] |
张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38.
doi: 10.11896/j.issn.1002-137X.2019.03.004 |
ZHANG Xiaofeng, WANG Xiuying. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46 (3): 30-38.
doi: 10.11896/j.issn.1002-137X.2019.03.004 |
|
[27] |
李星, 杨秀媛, 王丽婕. 灰狼算法在风电水电协同运行中的应用[J]. 发电技术, 2018, 39(1): 43-48.
doi: 10.12096/j.2096-4528.pgt.2018.007 |
LI Xing, YANG Xiuyuan, WANG Lijie. Grey wolf algorithm in coordinated hydro and wind power generation[J]. Power Generation Technology, 2018, 39(1): 43-48.
doi: 10.12096/j.2096-4528.pgt.2018.007 |
[1] | 米阳, 陈宇阳, 陈博洋, 韩云昊, 袁明瀚. 考虑微能网接入主动配电网的共享储能多目标配置[J]. 上海交通大学学报, 2024, 58(9): 1309-1322. |
[2] | 张赫, 周正凯, 林环宇, 王天慈. 关键车道优先下的港区公铁平交道口优化研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 791-800. |
[3] | 肖银璟, 张迪, 魏娟, 葛睿, 陈达伟, 杨桂兴, 叶志亮. 考虑减排对能源需求潜在影响的沿海城市碳减排路径动态优化[J]. 上海交通大学学报, 2024, 58(5): 600-609. |
[4] | 胡壮丽, 罗毅初, 蔡航. 城市电力行业碳排放测算方法及减碳路径[J]. 上海交通大学学报, 2024, 58(1): 82-90. |
[5] | 钟科星, 丁乐声, 张 聪, 毛彦东, 陈金龙. 基于神经网络的风电海缆弯曲限制器优化设计[J]. 海洋工程装备与技术, 2024, 11(1): 70-76. |
[6] | 彭斌, 刘慧鑫, 陶耀辉. 基于变径基圆渐开线涡旋压缩机的几何模型及优化研究[J]. 上海交通大学学报, 2023, 57(8): 1046-1054. |
[7] | 朱月尧, 祁佟, 吴星辰, 刘迪, 华昊辰. 计及实时碳减排的产消群价格型需求响应机制[J]. 上海交通大学学报, 2023, 57(4): 452-463. |
[8] | 马洲俊, 王勇, 王杰, 陈少宇. 柔性控制器MMC子模块最优冗余数量双重协同优化方法[J]. 上海交通大学学报, 2022, 56(3): 325-332. |
[9] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[10] | 何维, 孙宏磊, 陶袁钦, 蔡袁强. 开挖引起的隧道位移动态多目标优化反演预测[J]. 上海交通大学学报, 2022, 56(12): 1688-1699. |
[11] | 杨博, 王俊婷, 俞磊, 曹璞璘, 束洪春, 余涛. 基于孔雀优化算法的配电网储能系统双层多目标优化配置[J]. 上海交通大学学报, 2022, 56(10): 1294-1307. |
[12] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
[13] | 孙鸿强, 张占月, 方宇强. 基于NSGA-II算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55(3): 320-330. |
[14] | 王运龙, 姜云博, 管官, 邢佳鹏, 于光亮. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
[15] | 刘西, 李贤, 陈伟, 从光涛, 李如飞. 基于NSGA-Ⅲ算法的多目标分配方法研究[J]. 空天防御, 2021, 4(1): 109-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||