上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1294-1307.doi: 10.16183/j.cnki.jsjtu.2021.371
杨博1, 王俊婷1, 俞磊1, 曹璞璘1(), 束洪春1, 余涛2,3
收稿日期:
2021-09-24
出版日期:
2022-10-28
发布日期:
2022-11-03
通讯作者:
曹璞璘
E-mail:pulincao_kust@sina.com.
作者简介:
杨 博(1988-),男,云南省昆明市人,教授,从事新能源发电/储能系统优化与控制,以及人工智能在智能电网中的应用研究.
基金资助:
YANG Bo1, WANG Junting1, YU Lei1, CAO Pulin1(), SHU Hongchun1, YU Tao2,3
Received:
2021-09-24
Online:
2022-10-28
Published:
2022-11-03
Contact:
CAO Pulin
E-mail:pulincao_kust@sina.com.
摘要:
考虑电池储能系统(BESSs)规划与运行之间的联系,建立兼顾经济性和技术性要求的BESSs多目标优化配置模型并进行双层架构,保证BESSs规划的有效性和运行的高效性.内层以BESSs运营收益最大为目标,提出孔雀优化算法求解BESSs充放电运行策略的最优解;外层以BESSs投资运维成本、配电网电压波动和负荷波动最小为目标,设计多目标孔雀优化算法求解选址定容规划方案的Pareto非支配解集.考虑配电网运行条件的不确定性,采用聚类算法获得典型场景集,并基于IEEE-33节点系统进行仿真.结果表明:所提算法实现了局部探索和全局搜索的平衡,有效获得高质量解;与传统多目标优化算法相比,其能够获得分布更广泛且均匀的Pareto前沿,实现BESSs投资效益最优,显著提升配电网电压质量和功率稳定性.
中图分类号:
杨博, 王俊婷, 俞磊, 曹璞璘, 束洪春, 余涛. 基于孔雀优化算法的配电网储能系统双层多目标优化配置[J]. 上海交通大学学报, 2022, 56(10): 1294-1307.
YANG Bo, WANG Junting, YU Lei, CAO Pulin, SHU Hongchun, YU Tao. Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1294-1307.
表3
不同算法下的外层Pareto优化结果
算法 | 标准 | F1/元 | F2(p.u.) | F3/MW |
---|---|---|---|---|
MOPSO-PSO | 最差值 | 9.6331×105 | 15.7440 | 335.49 |
最好值 | 4.3513×105 | 0.3392 | 325.22 | |
平均值 | 4.7894×105 | 0.6860 | 335.08 | |
折中解 | 4.5364×105 | 0.6549 | 334.83 | |
NSGAII-GA | 最差值 | 6.9207×105 | 3.3892 | 338.61 |
最好值 | 2.5263×105 | 0.3431 | 321.21 | |
平均值 | 4.1647×105 | 0.7902 | 330.98 | |
折中解 | 3.4864×105 | 0.5931 | 328.84 | |
MOGWO-GWO | 最差值 | 3.6801×105 | 33.6600 | 508.55 |
最好值 | -3.7789×105 | 0.2488 | 298.90 | |
平均值 | -8.3822×104 | 8.2495 | 379.74 | |
折中解 | -2.1783×103 | 0.4436 | 298.90 | |
MOPOA-POA | 最差值 | 5.8130×105 | 35.5390 | 538.81 |
最好值 | -1.7104×106 | 0.3138 | 282.56 | |
平均值 | -2.9754×105 | 9.3221 | 387.86 | |
折中解 | -3.5192×105 | 0.3736 | 328.64 |
表4
不同算法下的Pareto解集性能指标
算法 | GD | IGD | SP | 广泛性 | PD | DM | HV |
---|---|---|---|---|---|---|---|
MOPSO-PSO | 6314 | 2.798×105 | 2.798×105 | 1.11 | 7.918×107 | 0.267 | 0.1878 |
NSGAII-GA | 2994 | 2.266×105 | 2.266×104 | 1.012 | 7.691×107 | 0.344 | 0.1015 |
MOGWO-GWO | 9469 | 1.038×105 | 1.038×105 | 1.358 | 5.468×108 | 0.698 | 0.2961 |
MOPOA-POA | 872.9 | 1.568×104 | 1.988×104 | 0.969 | 7.47×108 | 0.889 | 0.2855 |
表5
不同算法获得的BESSs配置方案和优化结果
算法 | BESSs优化配置方案 | 内层优化结果 f/元 | ω1 | ω2 | ω3 | 外层优化结果 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
位置节点 | 容量/(MW·h) | 功率/MW | F1/元 | F2(p.u.) | F3/MW | ||||||
1 | (27, 33) | (0.375, 0.375) | (0.093, 0.09) | 3.814×104 | 0.554 | 0.429 | 0.017 | 4.536×105 | 0.655 | 334.83 | |
2 | (25, 21) | (0.646, 0.612) | (0.162, 0.15) | 3.319×105 | 0.296 | 0.553 | 0.151 | 3.486×105 | 0.593 | 328.84 | |
3 | (23, 2) | (1.426, 3.375) | (0.476, 1.222) | 1.343×106 | 0.167 | 0.499 | 0.334 | -2.178×103 | 0.444 | 298.80 | |
4 | (23, 7) | (1.827, 2.445) | (0.457, 0.611) | 1.582×106 | 0.244 | 0.476 | 0.28 | -3.519×105 | 0.374 | 328.64 | |
5 | (8, 3) | (0.701, 0.484) | (0.175, 0.242) | 4.067×105 | 1/3 | 1/3 | 1/3 | -2.825×105 | 5.87 | 328.88 |
[1] | YANG B, WANG J T, CHEN Y X, et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook[J]. Journal of Energy Storage, 2020, 32: 101814. |
[2] |
YANG B, YU L, CHEN Y X, et al. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey[J]. International Journal of Energy Research, 2021, 45(3): 3615-3642.
doi: 10.1002/er.6104 URL |
[3] | 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22): 76-83. |
SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83. | |
[4] |
YANG B, WANG J B, WANG J T, et al. Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach[J]. Journal of Cleaner Production, 2021, 279: 123362.
doi: 10.1016/j.jclepro.2020.123362 URL |
[5] |
YANG B, WANG J T, ZHANG X S, et al. Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach[J]. Energy, 2020, 202: 117753.
doi: 10.1016/j.energy.2020.117753 URL |
[6] |
YANG B, WANG J B, ZHANG X S, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444.
doi: 10.1016/j.jpowsour.2019.227444 URL |
[7] | 杨博, 俞磊, 王俊婷, 等. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688. |
YANG Bo, YU Lei, WANG Junting, et al. Optimal sizing and placement of distributed generation based on adaptive manta ray foraging optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1673-1688. | |
[8] | 颜志敏, 王承民, 郑健, 等. 配电网中蓄电池储能系统的价值评估模型[J]. 电力自动化设备, 2013, 33(2): 57-61. |
YAN Zhimin, WANG Chengmin, ZHENG Jian, et al. Value assessment model of battery energy storage system in distribution network[J]. Electric Power Automation Equipment, 2013, 33(2): 57-61. | |
[9] | 苏海锋, 胡梦锦, 梁志瑞. 基于时序特性含储能装置的分布式电源规划[J]. 电力自动化设备, 2016, 36(6): 56-63. |
SU Haifeng, HU Mengjin, LIANG Zhirui. Distributed generation & energy storage planning based on timing characteristics[J]. Electric Power Automation Equipment, 2016, 36(6): 56-63. | |
[10] | 章美丹, 宋晓喆, 辛焕海, 等. 计及网损的配电网电池储能站优化运行策略[J]. 电网技术, 2013, 37(8): 2123-2128. |
ZHANG Meidan, SONG Xiaozhe, XIN Huanhai, et al. Optimal operation strategy of battery energy storagesystem in distribution networks with consideration of power losses[J]. Power System Technology, 2013, 37(8): 2123-2128. | |
[11] |
LI R, WANG W, CHEN Z, et al. Optimal planning of energy storage system in active distribution system based on fuzzy multi-objective bi-level optimization[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 342-355.
doi: 10.1007/s40565-017-0332-x URL |
[12] | 贾雨龙, 米增强, 刘力卿, 等. 分布式储能系统接入配电网的容量配置和有序布点综合优化方法[J]. 电力自动化设备, 2019, 39(4): 1-7. |
JIA Yulong, MI Zengqiang, LIU Liqing, et al. Comprehensive optimization method of capacity configuration and ordered installation for distributed energy storage system accessing distribution network[J]. Electric Power Automation Equipment, 2019, 39(4): 1-7. | |
[13] | 张忠会, 雷大勇, 李俊, 等. 基于自适应ε-支配多目标粒子群算法的含SOP的主动配电网源-网-荷-储双层协同规划模型[J]. 电网技术, 2022, 6, 2199-2209. |
ZHANG Zhonghui, LEI Dayong, LI Jun, et al. Source-network-load-storage bi-level collaborative planning model of active distribution network with sop based on adaptive ε-dominating multi-objective particle swarm optimization algorithm[J]. Power System Technology, 2022, 6, 2199-2209. | |
[14] |
ABU-MOUTI F S, EL-HAWARY M E. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2090-2101.
doi: 10.1109/TPWRD.2011.2158246 URL |
[15] | 叶鹏, 刘思奇, 关多娇, 等. 基于自适应均衡技术的分布式储能聚合模型及评估方法[J]. 上海交通大学学报, 2021, 55(12): 1689-1699. |
YE Peng, LIU Siqi, GUAN Duojiao, et al. An aggregation model and evaluation method of distributed energy storage based on adaptive equalization technology[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1689-1699. | |
[16] |
SABER H, MOEINI-AGHTAIE M, EHSAN M. Developing a multi-objective framework for expansion planning studies of distributed energy storage systems (DESSs)[J]. Energy, 2018, 157: 1079-1089.
doi: 10.1016/j.energy.2018.06.081 URL |
[17] | 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置[J]. 电力系统保护与控制, 2020, 48(15): 116-124. |
LU Limin, CHU Guowei, ZHANG Tao, et al. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J]. Power System Protection and Control, 2020, 48(15): 116-124. | |
[18] | 马溪原, 吴耀文, 方华亮, 等. 采用改进细菌觅食算法的风/光/储混合微电网电源优化配置[J]. 中国电机工程学报, 2011, 31(25): 17-25. |
MA Xiyuan, WU Yaowen, FANG Hualiang, et al. Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm[J]. Proceedings of the CSEE, 2011, 31(25): 17-25. | |
[19] | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Yingyuan, CHEN Yongchong, LIU Yong, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
[20] | 张志义, 余涛, 王德志, 等. 基于集成学习的含电气热商业楼宇群的分时电价求解[J]. 中国电机工程学报, 2019, 39(1): 112-125. |
ZHANG Zhiyi, YU Tao, WANG Dezhi, et al. Optimal solution of time-of-use price based on ensemble learning for electricity-gas-heat commercial building[J]. Proceedings of the CSEE, 2019, 39(1): 112-125. | |
[21] | 中华人民共和国国家发展和改革委员会, 国家能源局. 解决弃水弃风弃光问题实施方案[R]. 北京: 中华人民共和国国家发展和改革委员会, 国家能源局, 2017. |
National Development and Reform Commission, National Energy Administration. Implementation plan to solve the problem of water, air and light abandonment[R]. Beijing: National Development and Reform Commission, National Energy Administration, 2017. | |
[22] | 林君豪, 张焰, 陈思, 等. 考虑可控负荷影响的主动配电系统分布式电源优化配置[J]. 电力自动化设备, 2016, 36(9): 46-53. |
LIN Junhao, ZHANG Yan, CHEN Si, et al. Optimal DG allocation considering effect of controllable load for active distribution system[J]. Electric Power Automation Equipment, 2016, 36(9): 46-53. | |
[23] |
GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35.
doi: 10.1007/s00366-011-0241-y URL |
[24] |
YANG B, WANG J B, ZHANG X S, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444.
doi: 10.1016/j.jpowsour.2019.227444 URL |
[25] |
杨蕾, 吴琛, 黄伟, 等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设, 2020, 41(7): 100-109.
doi: 10.12204/j.issn.1000-7229.2020.07.013 |
YANG Lei, WU Chen, HUANG Wei, et al. Pareto-based multi-objective reactive power optimization for power grid with high-penetration wind and solar renewable energies[J]. Electric Power Construction, 2020, 41(7): 100-109.
doi: 10.12204/j.issn.1000-7229.2020.07.013 |
|
[26] |
FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: A novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190.
doi: 10.1016/j.knosys.2019.105190 URL |
[27] | 伍忠东, 高新波, 谢维信. 基于核方法的模糊聚类算法[J]. 西安电子科技大学学报, 2004, 31(4): 533-537. |
WU Zhongdong, GAO Xinbo, XIE Weixin. A study of a new fuzzy clustering algorithm based on the kernel method[J]. Journal of Xidian University, 2004, 31(4): 533-537. | |
[28] |
GOSWAMI S K, BASU S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1484-1491.
doi: 10.1109/61.141868 URL |
[29] | RAN F, TIMOTHY R, ROBERT M. Utility-scale photovoltaics-plus-energy storage system costs benchmark[R]. USA: National Renewable Energy Laboratory, 2018. |
[30] |
MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
doi: 10.1016/j.eswa.2015.10.039 URL |
[31] | DURILLO J J, NEBRO A J, COELLO COELLO C A, et al. A comparative study of the effect of parameter scalability in multi-objective metaheuristics[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 1893-1900. |
[32] | 王丽萍, 邱飞岳. 复杂多目标问题的优化方法及应用[M]. 北京: 科学出版社, 2018. |
WANG Liping, QIU Feiyue. Complex multi-objective optimization and it’s applications[M]. Beijing: Science Press, 2018. |
[1] | 方晓涛, 严正, 王晗, 徐潇源, 陈玥. 考虑概率电压不平衡度越限风险的共享储能优化运行方法[J]. 上海交通大学学报, 2022, 56(7): 827-839. |
[2] | 廖启术, 胡维昊, 曹迪, 黄琦, 陈哲. 新能源电力系统中的分布式光伏净负荷预测[J]. 上海交通大学学报, 2021, 55(12): 1520-1531. |
[3] | 钟光耀, 邰能灵, 黄文焘, 李然, 傅晓飞, 纪坤华. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
[4] | 谭嘉, 李知艺, 杨欢, 赵荣祥, 鞠平. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553. |
[5] | 李玲芳, 陈占鹏, 胡炎, 邰能灵, 高孟平, 朱涛. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
[6] | 潘险险, 陈霆威, 许志恒, 王天伦, 张俊潇. 适应多场景的微电网一体化柔性规划方法(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||