上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1294-1307.doi: 10.16183/j.cnki.jsjtu.2021.371

• 新型电力系统与综合能源 • 上一篇    下一篇

基于孔雀优化算法的配电网储能系统双层多目标优化配置

杨博1, 王俊婷1, 俞磊1, 曹璞璘1(), 束洪春1, 余涛2,3   

  1. 1.昆明理工大学 电力工程学院,昆明 650500
    2.华南理工大学 电力学院,广州 510640
    3.广东省电网智能量测与先进计量企业重点实验室,广州 510640
  • 收稿日期:2021-09-24 出版日期:2022-10-28 发布日期:2022-11-03
  • 通讯作者: 曹璞璘 E-mail:pulincao_kust@sina.com.
  • 作者简介:杨 博(1988-),男,云南省昆明市人,教授,从事新能源发电/储能系统优化与控制,以及人工智能在智能电网中的应用研究.
  • 基金资助:
    国家自然科学基金(61963020);国家自然科学基金-国家电网公司智能电网联合基金(U2066212);云南省自然科学基金(202001AT070096);云南省重大科技专项计划(202002AF080001)

Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network

YANG Bo1, WANG Junting1, YU Lei1, CAO Pulin1(), SHU Hongchun1, YU Tao2,3   

  1. 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2. College of Electric Power, South China University of Technology, Guangzhou 510640, China
    3. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510640, China
  • Received:2021-09-24 Online:2022-10-28 Published:2022-11-03
  • Contact: CAO Pulin E-mail:pulincao_kust@sina.com.

摘要:

考虑电池储能系统(BESSs)规划与运行之间的联系,建立兼顾经济性和技术性要求的BESSs多目标优化配置模型并进行双层架构,保证BESSs规划的有效性和运行的高效性.内层以BESSs运营收益最大为目标,提出孔雀优化算法求解BESSs充放电运行策略的最优解;外层以BESSs投资运维成本、配电网电压波动和负荷波动最小为目标,设计多目标孔雀优化算法求解选址定容规划方案的Pareto非支配解集.考虑配电网运行条件的不确定性,采用聚类算法获得典型场景集,并基于IEEE-33节点系统进行仿真.结果表明:所提算法实现了局部探索和全局搜索的平衡,有效获得高质量解;与传统多目标优化算法相比,其能够获得分布更广泛且均匀的Pareto前沿,实现BESSs投资效益最优,显著提升配电网电压质量和功率稳定性.

关键词: 电池储能系统, 双层优化配置模型, 孔雀优化算法, Pareto多目标优化

Abstract:

Based on the relation between battery energy storage systems (BESSs) planning and operation, a multi-objective optimal allocation model that takes into account both economic and technical requirements is established, and a bi-level optimization structure is constructed to ensure effective planning and high-efficient operation of BESSs. In the inner layer, a peafowl optimization algorithm (POA) is employed to solve the BESSs charge-discharge operation strategy with the purpose of BESSs operation benefit maximization. In the outer layer, a multi-objective peafowl optimization algorithm (MOPOA) is devised to solve the Pareto solution set of BESSs siting and sizing scheme, which aims at minimizing BESSs cost, as well as voltage fluctuation and load fluctuation in distribution network. Furthermore, a typical scenario set is obtained via the clustering algorithm considering uncertain operating conditions. The simulation is performed based on the extended IEEE-33 bus system. The results show that the proposed algorithm achieves a trade-off between local search and global search, thus obtains a high-quality solution. It can obtain a more widely distributed and uniform Pareto front, which not only achieves the best investment benefit, but also improves voltage quality and power stability.

Key words: battery energy storage systems (BESSs), bi-level optimal allocation model, peafowl optimization algorithm (POA), Pareto based multi-objective optimization

中图分类号: