上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (6): 798-805.doi: 10.16183/j.cnki.jsjtu.2022.476
余浩1, 黎灿兵2(), 叶志亮2, 彭穗1, 任万鑫1, 陈思捷2, 唐彬伟3, 陈达伟2
收稿日期:
2022-11-25
修回日期:
2023-05-29
接受日期:
2023-07-31
出版日期:
2024-06-28
发布日期:
2024-07-05
通讯作者:
黎灿兵,教授,博士生导师;E-mail: 作者简介:
余浩(1986-),高级工程师,从事电网规划、系统仿真及新能源并网技术研究.
基金资助:
YU Hao1, LI Canbing2(), YE Zhiliang2, PENG Sui1, REN Wanxin1, CHEN Sijie2, TANG Binwei3, CHEN Dawei2
Received:
2022-11-25
Revised:
2023-05-29
Accepted:
2023-07-31
Online:
2024-06-28
Published:
2024-07-05
摘要:
快速、准确分析大型风电场短路特性具有重要的工程应用价值,而尾流效应影响下风电场各机组短路特性差异大,需建立风电场短路故障时等值模型.提出一种考虑尾流效应影响的风电场短路故障动态等值方法,首先定义尾流效应因子反映机组受尾流效应影响程度,并采用尾流效应因子作为分组依据,缩小尾流效应影响下组内各机组运行状态差异性.为提高非对称短路故障下的等值模型有效性,分析风电场短路时正、负、零三序网络的构成,提出适用于零序集电网络的等值方法,搭建平台并加以验证.仿真结果表明,该风电场短路故障动态等值模型能准确反映尾流效应影响下风电场有功、无功短路输出特性.
中图分类号:
余浩, 黎灿兵, 叶志亮, 彭穗, 任万鑫, 陈思捷, 唐彬伟, 陈达伟. 计及尾流效应的风电场短路故障动态等值建模[J]. 上海交通大学学报, 2024, 58(6): 798-805.
YU Hao, LI Canbing, YE Zhiliang, PENG Sui, REN Wanxin, CHEN Sijie, TANG Binwei, CHEN Dawei. Dynamic Equivalence Modeling of Short-Circuit Faults in Wind Farms Considering Wake Effects[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 798-805.
[1] |
奚鑫泽, 邢超, 覃日升, 等. 含双馈风力发电系统的配电网短路电流特性[J]. 上海交通大学学报, 2023, 57(7): 921-927.
doi: 10.16183/j.cnki.jsjtu.2022.011 |
XI Xinze, XING Chao, QIN Risheng, et al. Characteristics of short-circuit current in distribution network with doubly-fed wind power system[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 921-927. | |
[2] | 林俐, 赵会龙, 陈迎, 等. 风电场建模研究综述[J]. 现代电力, 2014, 31(2): 1-10. |
LIN Li, ZHAO Huilong, CHEN Ying, et al. Research summary of wind farm modeling[J]. Modern Electric Power, 2014, 31(2): 1-10. | |
[3] | CHOWDHURY M A, SHEN W X, HOSSEINZADEH N, et al. A novel aggregated DFIG wind farm model using mechanical torque compensating factor[J]. Energy Conversion and Management, 2013, 67: 265-274. |
[4] | LIU H Z, CHEN Z. Aggregated modelling for wind farms for power system transient stability studies[C]//2012 Asia-Pacific Power and Energy Engineering Conference. Shanghai, China: IEEE, 2012: 1-6. |
[5] | 陈树勇, 王聪, 申洪, 等. 基于聚类算法的风电场动态等值[J]. 中国电机工程学报, 2012, 32(4): 11-19. |
CHEN Shuyong, WANG Cong, SHEN Hong, et al. Dynamic equivalence for wind farms based on clustering algorithm[J]. Proceedings of the CSEE, 2012, 32(4): 11-19. | |
[6] | 徐玉琴, 刘丹丹. 基于两步分群法的双馈机组风电场等值建模[J]. 电力系统保护与控制, 2017, 45(6): 108-114. |
XU Yuqin, LIU Dandan. Equivalence of wind farms with DFIG based on two-step clustering method[J]. Power System Protection and Control, 2017, 45(6): 108-114. | |
[7] |
余浩, 张哲萌, 彭穗, 等. 海上风电经柔性直流并网技术标准对比分析[J]. 上海交通大学学报, 2022, 56(4): 403-412.
doi: 10.16183/j.cnki.jsjtu.2021.465 |
YU Hao, ZHANG Zhemeng, PENG Sui, et al. Comparative analysis of technical standards for offshore wind power via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. | |
[8] | YE L, RAO R S, ZHANG Y L, et al. Dynamic equivalent modeling approach of wind power plant with PMSG-WTGs[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, USA: IEEE, 2017: 1-5. |
[9] | ZHOU Y H, ZHAO L, MATSUO I B M, et al. A dynamic weighted aggregation equivalent modeling approach for the DFIG wind farm considering the weibull distribution for fault analysis[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5514-5523. |
[10] | 魏娟, 黎灿兵, 黄晟, 等. 大规模风电场高电压穿越控制方法研究综述[J/OL]. 上海交通大学学报. https://doi.org/10.16183/j.cnki.jsjtu.2022.416. |
WEI Juan, LI Canbing, HUANG Sheng, et al. Review on high voltage ride-through control method of large-scale wind farm[J/OL]. Journal of Shanghai Jiao Tong University. https://doi.org/10.16183/j.cnki.jsjtu.2022.416. | |
[11] | 高永强, 梅勇, 王晗玥, 等. 基于机组聚合与线路等值影响因子的风电场等值优化[J]. 广东电力, 2023, 36(6): 11-22. |
GAO Yongqiang, MEI Yong, WANG Hanyue, et al. Equivalent optimization of wind farm based on influencing factors of wind turbine aggregation and collector line equivalence[J]. Guangdong Electric Power, 2023, 36(6): 11-22. | |
[12] | 袁超, 颜全椿, 顾文, 等. 考虑尾流效应及连接架构的风电场等值方法研究[J]. 可再生能源, 2023, 41(6): 794-803. |
YUAN Chao, YAN Quanchun, GU Wen, et al. Study on the wind farm equivalent method considering wake effect and connection structure[J]. Renewable Energy Resources, 2023, 41(6): 794-803. | |
[13] | 徐玉琴, 王娜. 基于聚类分析的双馈机组风电场动态等值模型的研究[J]. 华北电力大学学报(自然科学版), 2013, 40(3): 1-5. |
XU Yuqin, WANG Na. Study on dynamic equivalence of wind farms with DFIG based on clustering analysis[J]. Journal of North China Electric Power University (Natural Science Edition), 2013, 40(3): 1-5. | |
[14] |
张剑, 崔明建, 何怡刚. 基于PMU实测数据的DFIG风电场等值模型鲁棒性与适应性分析[J]. 太阳能学报, 2023, 44(10): 320-328.
doi: 10.19912/j.0254-0096.tynxb.2022-0867 |
ZHANG Jian, CUI Mingjian, HE Yigang. Robustness and adaptability analysis of equivalent model of DFIG wind farm based on measured data of PMU[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 320-328.
doi: 10.19912/j.0254-0096.tynxb.2022-0867 |
|
[15] | 高峰, 赵东来, 周孝信, 等. 直驱式风电机组风电场动态等值[J]. 电网技术, 2012, 36(12): 222-227. |
GAO Feng, ZHAO Donglai, ZHOU Xiaoxin, et al. Dynamic equivalent algorithm for wind farm composed of direct-drive wind turbines[J]. Power System Technology, 2012, 36(12): 222-227. | |
[16] | 董文凯, 任必兴, 王海风, 等. 适用于系统次同步振荡分析的风电场等值建模方法综述[J]. 电力工程技术, 2022, 41(4): 33-43. |
DONG Wenkai, REN Bixing, WANG Haifeng, et al. Small-signal equivalent modeling methods of the wind farm and its application in sub-synchronous oscillations analysis of gird-connected wind power systems[J]. Electric Power Engineering Technology, 2022, 41(4): 33-43. | |
[17] | 白雁翔, 王德林, 马宁宁, 等. 大型风电场的动态等值方法研究[J]. 电工技术, 2018(13): 46-49. |
BAI Yanxiang, WANG Delin, MA Ningning, et al. Study on dynamic equivalence method of large scale wind farm[J]. Electric Engineering, 2018(13): 46-49. | |
[18] | 刘清媛, 吴松华, 张凯临, 等. 基于单-双高斯模型拟合法的测风激光雷达海上风电机组尾流特征分析[J]. 大气与环境光学学报, 2021, 16(1): 44-57. |
LIU Qingyuan, WU Songhua, ZHANG Kailin, et al. Offshore wind turbine wake characteristics analysis using single-double Gaussian model based on wind lidar measurements[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 44-57. | |
[19] | SUN H Y, GAO X X, YANG H X. A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110042. |
[20] | 徐玉琴, 张林浩, 王娜. 计及尾流效应的双馈机组风电场等值建模研究[J]. 电力系统保护与控制, 2014, 42(1): 70-76. |
XU Yuqin, ZHANG Linhao, WANG Na. Study on equivalent model of wind farms with DIFG considering wake effects[J]. Power System Protection and Control, 2014, 42(1): 70-76. | |
[21] | 黄梅, 万航羽. 在动态仿真中风电场模型的简化[J]. 电工技术学报, 2009, 24(9): 147-152. |
HUANG Mei, WAN Hangyu. Simplification of wind farm model for dynamic simulation[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 147-152. | |
[22] | 曹娜, 于群. 风速波动情况下并网风电场内风电机组分组方法[J]. 电力系统自动化, 2012, 36(2): 42-46. |
CAO Na, YU Qun. A grouping method for wind turbines in a grid-connected wind farm during wind speed fluctuation[J]. Automation of Electric Power Systems, 2012, 36(2): 42-46. | |
[23] | 袁飞. 风电场常用工程尾流模型对比与分析[J]. 能源与节能, 2023(11): 37-41. |
YUAN Fei. Comparison and analysis of commonly used engineering wake models in wind farms[J]. Energy and Energy Conservation, 2023(11): 37-41. | |
[24] | 蔺红, 晁勤. 等值损耗功率法在风电场等值计算中的应用[J]. 电测与仪表, 2011, 48(8): 5-9. |
LIN Hong, CHAO Qin. Application of equivalent power loss in equivalence calculation of wind farms[J]. Electrical Measurement & Instrumentation, 2011, 48(8): 5-9. |
[1] | 魏娟, 黎灿兵, 黄晟, 陈思捷, 葛睿, 沈非凡, 魏来. 大规模风电场高电压穿越控制方法研究综述[J]. 上海交通大学学报, 2024, 58(6): 783-797. |
[2] | 肖鹏飞, 倪何, 金家善. 基于MWSA的热力系统单参数时序预测方法[J]. 上海交通大学学报, 2023, 57(1): 36-44. |
[3] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[4] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
[5] | 魏志飞, 宋泉宏, 李芳, 杨擎宇, 王爱华. 基于神经网络模型压缩技术的目标检测算法研究[J]. 空天防御, 2021, 4(4): 107-112. |
[6] | 李洋洋,史历程,万卫兵,赵群飞. 基于卷积神经网络的三维物体检测方法[J]. 上海交通大学学报(自然版), 2018, 52(1): 7-12. |
[7] | 陈震,潘尔顺. 基于退化数据的高可靠性产品贝叶斯分类决策[J]. 上海交通大学学报(自然版), 2017, 51(1): 76-. |
[8] | 阮胜福, 樊冰, 王涛, 田维兴. 半潜式海上风电平台运动特性研究[J]. 海洋工程装备与技术, 2016, 3(6): 371-375. |
[9] | 沙建军, 潘尔顺. 基于改进自适应神经模糊推理模型的 回流焊参数设定方法[J]. 上海交通大学学报(自然版), 2011, 45(12): 1741-1746. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||