上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (6): 783-797.doi: 10.16183/j.cnki.jsjtu.2022.416
• 新型电力系统与综合能源 • 下一篇
魏娟1, 黎灿兵2, 黄晟1(), 陈思捷2, 葛睿3, 沈非凡1, 魏来1
收稿日期:
2022-10-20
修回日期:
2022-12-18
接受日期:
2023-03-03
出版日期:
2024-06-28
发布日期:
2024-07-05
通讯作者:
黄晟,教授,博士生导师,电话(Tel.):0731-88822461;E-mail: 作者简介:
魏娟(1990-),博士,助理研究员,从事风电机组及机群建模、故障穿越及无功电压控制研究.
基金资助:
WEI Juan1, LI Canbing2, HUANG Sheng1(), CHEN Sijie2, GE Rui3, SHEN Feifan1, WEI Lai1
Received:
2022-10-20
Revised:
2022-12-18
Accepted:
2023-03-03
Online:
2024-06-28
Published:
2024-07-05
摘要:
大规模发展风电是新能源开发和利用的重大需求,是实现我国“碳达峰、碳中和”战略目标的关键支撑.由外部电网故障造成的风电场电压安全稳定运行问题成为制约风电大规模、集群化、智能化发展的关键瓶颈之一.主要针对电网电压骤升工况,首先从电磁关系和能量流动角度分析常见的双馈风电机组、永磁直驱风电机组以及风电场的高电压穿越(HVRT)暂态特性;然后,基于风电机组不同控制区域归纳总结风电机组HVRT控制策略和风电场HVRT及故障后电压恢复协调优化控制方法,梳理和比较现有各种控制策略的工作原理和优缺点,并从控制结构的角度归纳分析现有大规模风电场的HVRT控制方法的原理、优缺点和效果,总结风电机组和风电场在HVRT控制上的不同点;最后,探讨和预测未来风电场电压智能安全控制的发展趋势和潜在研究热点,为提升我国风电大规模应用和电网安全运行提供借鉴指导作用.
中图分类号:
魏娟, 黎灿兵, 黄晟, 陈思捷, 葛睿, 沈非凡, 魏来. 大规模风电场高电压穿越控制方法研究综述[J]. 上海交通大学学报, 2024, 58(6): 783-797.
WEI Juan, LI Canbing, HUANG Sheng, CHEN Sijie, GE Rui, SHEN Feifan, WEI Lai. Review of High Voltage Ride-Through Control Method of Large-Scale Wind Farm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 783-797.
表1
风电机组HVRT不同控制策略的特点比较
控制类别 | 控制方法 | 优点 | 缺点 |
---|---|---|---|
机侧控制方法 | ①机侧变流器q轴电流分量补偿策略;②加入虚拟电阻或虚拟阻抗[ | ①将机侧多余的风能转化为转子的动能,提高了能量利用率;②通过去磁控制或者电流调节器抑制故障瞬间转子冲击电流,避免变流器被破坏或者引发更大的损害;③适用于各种类型的对称和不对称电网故障;④在严重故障下可实现故障穿越. | ①调节时间较长,可能会使风轮转速过快而超过额定转速导致失控;②控制效果受到励磁变流器容量限制,在严重故障下可能无法成功穿越故障,存在可行性区域的限制;③RSC的全部容量都用来产生与定子磁链暂态分量相反的转子电流,控制效果受到变流器容量的限制;④增加额外电路使得系统更加复杂,维护和建设成本较高. |
直流母线控制方法 | ①直流母线环节增加Chopper保护电路[ | ①加入Chopper保护电路可消耗直流母线的不平衡功率,抑制直流母线过电压;②可以扩大变流器的电压输出范围,提高风电机组HVRT的能力;③储能装置的使用可以快速有效地响应HVRT过程中直流母线电压的波动. | ①采用Chopper保护电路会消耗掉系统的部分功率,造成风功率的浪费;②使直流母线电压抬升,会造成一定的波动影响;③分布式储能系统的增加会大大提高设备的成本. |
网侧控制方法 | ①协调无功-电压与有功-电压减载控制[ | ①通过减载可以避免转子过电压,从而保护变流器电力电子器件免遭击穿的损害;②在外部干扰或参数有误差情况下控制效果依然较好,对系统参数敏感性较低;③可以帮助风电机组快速恢复端电压,提升电网电压恢复能力. | ①控制逻辑较复杂,HVRT的控制效果对参数依赖性较高;②控制效果受到励磁变频器容量限制,在严重故障下可能无法成功穿越故障,存在可行性区域的限制;③与风电机组协调控制较复杂,同时会增加系统成本. |
表2
风电场HVRT与电压恢复不同控制策略的特点比较
控制方式 | 优点 | 缺点 |
---|---|---|
集中式控制[ | 要求获取风电场内所有风电机组的具体信息,中央控制器执行优化计算,然后将功率给定值下发给风电机组.可与电网联动,实现特定的优化目标. | 需要获取风电场内所有电机组信息,中央控制器的计算负担重,系统可靠性和灵活性低. |
分散式控制[ | 风电机组由本地控制独立调节,无需与中央控制器通信,在HVRT过程中可以快速抑制风电机组波动. | 与电网互动能力不足,支撑电网及提供辅助能力弱,无法实现风电场群的全局最优运行. |
分级(分层)分布式控制[ | 计算任务由中央控制器和风电机组控制器共同分担,需要中央控制器协调所有风电机组控制器,计算负担有效降低. | 只能针对某些特定的问题结构进行处理. |
表3
风电机组与大规模风电场HVRT控制策略与电压恢复的特点比较
暂态特性的区别 | 控制策略的区别 | |
---|---|---|
风电机组 | 风电机组HVRT主要研究不同类别单台风电机组的暂态特征: ①直驱风电机组由于GSC输出电压受限于调制系数,当电网电压骤升后,GSC会由于过调制而导致风电机组失控;②DFIG在HVRT期间,不仅要保证GSC不过调制,还要考虑定子磁链变化的问题.由于GSC输出电压幅值有限,将在直流侧产生不平衡功率,进而引起直流母线过电压,带来风电机组脱网的风险. | ①直驱风电机组以防止GSC过调制为目的,在直流母线处适当抬升电压、通过GSC向电网输送动态的感性无功功率;②DFIG需分析风电机组功率流动机理,以减小不平衡功率、过电流冲击和过调制为目的,分别在风电机组机侧、直流母线处、网侧增加硬件和软件控制设备或措施. |
大规模风电场 | ①大规模风电场HVRT和电压恢复过程的暂态特性更加复杂,除了考虑单机在电网电压骤升工况下的影响因素之外,还应考虑风电场内不同风电机组之间的耦合特性对风电机组端电压的影响;②大规模风电场中不同风电机组由于位置不同,潮流分布不同,在HVRT时会呈现差异性暂态特征;③风电机组节点之间存在复杂的电-磁-力交互影响,耦合程度指数级增长,当发生故障时会发生大范围波动,甚至出现风电机组级联跳闸,因此对控制策略的计算速度和精准性要求更高. | ①大规模风电场HVRT和电压恢复过程的控制策略逻辑结构更加复杂,不仅要考虑单台风电机组的控制策略,还要根据电网拓扑结构与无功最优分配结果精确调节电压幅值,保障所有风电机组不脱网运行;②通过分级优化计算,使风电场中央控制器与风电机组本地控制器高度配合,保证控制的快速性和稳定性,提高大规模风电场的HVRT与电压恢复能力. |
[1] | 国家能源局综合司. 关于2021年风电、光伏发电开发建设有关事项的通知(征求意见稿)[EB/OL]. (2021-04-19) [2022-09-08]. http://www.nea.gov.cn/2021-04/19/c_139890241.htm. |
General Department of the National Energy Administration. Notice on the development and construction of wind power and photovoltaic power generation in 2021 (draft for comments)[EB/OL]. (2021-04-19) [2022-09-08]. http://www.nea.gov.cn/2021-04/19/c_139890241.htm. | |
[2] | Global Wind Energy Council (GWEC). Global wind report: Annual market update 2021[EB/OL]. (2021-03-25) [2022-09-08]. https://gwec.net/global-wind-report-2021/. |
[3] | 中国可再生能源学会风能专业委员会. 2021年中国风电吊装容量统计简报[EB/OL]. (2022-04-22) [2022-09-08]. https://m.163.com/dy/article/H5J3I9J105529BLF.html. |
Chinese Wind Energy Association. Statistical bulletin of wind power hoisting capacity of China in 2021[EB/OL]. (2022-04-22) [2022-09-08]. https://m.163.com/dy/article/H5J3I9J105529BLF.html. | |
[4] | ZENG L, LI C B, LI Z Y, et al. Hierarchical bipartite graph matching method for transactive V2V power exchange in distribution power system[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 301-311. |
[5] | HUANG S, WU Q W, GUO Y F, et al. Bi-level decentralized active and reactive power control for large-scale wind farm cluster[J]. International Journal of Electrical Power & Energy Systems, 2019, 111: 201-215. |
[6] | 国家市场监督管理总局, 国家标准化管理委员会. 风力发电机组故障电压穿越能力测试规程: GB/T 36995—2018[S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Wind turbines—Test procedure of voltage fault ride through capability: GB/T 36995—2018[S]. Beijing: Standards Press of China, 2019. | |
[7] | 余浩, 肖彭瑶, 林勇, 等. 大规模海上风电高电压穿越研究进展与展望[J]. 智慧电力, 2020, 48(3): 30-38. |
YU Hao, XIAO Pengyao, LIN Yong, et al. Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J]. Smart Power, 2020, 48(3): 30-38. | |
[8] | 谢欢, 吴涛, 赵亚清, 等. 计及动态无功控制影响的风电汇集地区高电压脱网原因分析[J]. 电力系统自动化, 2015, 39(4): 19-25. |
XIE Huan, WU Tao, ZHAO Yaqing, et al. Analysis on high voltage trip off causation of dense wind power areas considering impact of dynamic reactive power control[J]. Automation of Electric Power Systems, 2015, 39(4): 19-25. | |
[9] | MIRSAEIDI S, DONG X Z, TZELEPIS D, et al. A predictive control strategy for mitigation of commutation failure in LCC-based HVDC systems[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 160-172. |
[10] | 屠竞哲, 张健, 刘明松, 等. 风火打捆直流外送系统直流故障引发风机脱网的问题研究[J]. 电网技术, 2015, 39(12): 3333-3338. |
TU Jingzhe, ZHANG Jian, LIU Mingsong, et al. Study on wind turbine generators tripping caused by HVDC contingencies of wind-thermal-bundled HVDC transmission systems[J]. Power System Technology, 2015, 39(12): 3333-3338. | |
[11] | 邹乐, 吴学光, 寇龙泽, 等. 电网电压对称骤升下双馈风力发电系统的改进控制策略研究[J]. 电网技术, 2020, 44(4): 1360-1367. |
ZOU Le, WU Xueguang, KOU Longze, et al. Improved control strategy for a double-fed generation system under grid voltage symmetric swell[J]. Power System Technology, 2020, 44(4): 1360-1367. | |
[12] | 谢震, 刘坤, 张兴, 等. 双馈风力发电机在电网电压不对称骤升下无功功率优化控制[J]. 中国电机工程学报, 2015, 35(13): 3211-3220. |
XIE Zhen, LIU Kun, ZHANG Xing, et al. Reactive power optimal control of doubly fed induction wind generators under unbalanced grid voltage swell[J]. Proceedings of the CSEE, 2015, 35(13): 3211-3220. | |
[13] | 徐海亮, 章玮, 陈建生, 等. 考虑动态无功支持的双馈风电机组高电压穿越控制策略[J]. 中国电机工程学报, 2013, 33(36): 112-119. |
XU Hailiang, ZHANG Wei, CHEN Jiansheng, et al. A high-voltage ride-through control strategy for DFIG based wind turbines considering dynamic reactive power support[J]. Proceedings of the CSEE, 2013, 33(36): 112-119. | |
[14] | 边晓燕, 田春笋, 符杨. 风力发电系统高电压穿越技术综述[J]. 广东电力, 2015, 28(6): 22-25. |
BIAN Xaioyan, TIAN Chunsun, FU Yang. Summary on high voltage ride-through technology for wind power generation system[J]. Guangdong Electric Power, 2015, 28(6): 22-25. | |
[15] | 李少林, 王伟胜, 王瑞明, 等. 双馈风电机组高电压穿越控制策略与试验[J]. 电力系统自动化, 2016, 40(16): 76-82. |
LI Shaolin, WANG Weisheng, WANG Ruiming, et al. Control strategy and experiment of high voltage ride through for DFIG-based wind turbines[J]. Automation of Electric Power Systems, 2016, 40(16): 76-82. | |
[16] | 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6. |
ZENG Hui, SUN Feng, LI Tie, et al. Analysis of “9·28” blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6. | |
[17] | WU B, LANG Y Q, ZARGARI N, et al. Power conversion and control of wind energy systems[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. |
[18] | 国家市场监督管理总局, 国家标准化管理委员会. 风力发电机组电网适应性测试规程: GB/T 36994—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Wind turbines—Test procedure of grid adaptability: GB/T 36994—2018[S]. Beijing: Standards Press of China, 2018. | |
[19] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 风电场接入电力系统技术规定: GB/T 19963—2011[S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Technical rule for connecting wind farm to power system: GB/T 19963—2011[S]. Beijing: Standards Press of China, 2012. | |
[20] | E.ON Netz. Grid code: High and extra high voltage[S]. Bayreuth, Germany: E. ON Netz GmbH, 2006. |
[21] | MOHSENI M, ISLAM S M. Transient control of DFIG-based wind power plants in compliance with the Australian grid code[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 2813-2824. |
[22] | TOHIDI S, MOHAMMADI-IVATLOO B. A comprehensive review of low voltage ride through of doubly fed induction wind generators[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 412-419. |
[23] | LIU X B, LI C B, SHAHIDEHPOUR M, et al. Fault current mitigation and voltage support provision by microgrids with synchronous generators[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 2816-2831. |
[24] | ZHOU C P, WANG Z, JU P, et al. High-voltage ride through strategy for DFIG considering converter blocking of HVDC system[J]. Journal of Modern Power Systems & Clean Energy, 2020, 8(3): 491-498. |
[25] | ZHOU C P, WANG Z, XIN H H, et al. A P-Q coordination based model predictive control for DFIG high-voltage ride through[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 254-263. |
[26] | 孙丽玲, 王艳娟, 许伯强. DFIG高电压穿越暂态特性分析及控制策略改进[J]. 电机与控制学报, 2019, 23(2): 27-34. |
SUN Liling, WANG Yanjuan, XU Boqiang. Transient analysis and control strategy improvement of high voltage ride through of DFIG[J]. Electric Machines & Control, 2019, 23(2): 27-34. | |
[27] | 余浩, 黎灿兵, 林勇, 等. 海上风电接入电网建模与故障穿越技术[M]. 北京: 中国电力出版社, 2021. |
YU Hao, LI Canbing, LIN Yong, et al. Modeling of offshore wind power connected to power grid and fault ride-through technology[M]. Beijing: China Electric Power Press, 2021. | |
[28] | WU G P, HUANG S, WU Q W, et al. Predictive torque and stator flux control for N*3-phase PMSM drives with parameter robustness improvement[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1970-1983. |
[29] | DU W J, DONG W K, WANG H F. Small-signal stability limit of a grid-connected PMSG wind farm dominated by the dynamics of PLLs[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2093-2107. |
[30] | LIU P L, ZHU G F, DING L, et al. High-voltage ride-through strategy for wind turbine with fully-rated converter based on current operating range[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108101. |
[31] | WANG Y F, ZHAO C Y, GUO C Y, et al. Dynamics and small signal stability analysis of PMSG-based wind farm with an MMC-HVDC system[J]. CSEE Journal of Power & Energy Systems, 2020, 6(1): 226-235. |
[32] | KUNDUR P S. Power system stability and control[M]. New York: McGraw-Hill, Inc., 1994. |
[33] | 姚骏, 郭利莎, 曾欣, 等. 采用串联网侧变换器的双馈风电系统不对称高电压穿越控制研究[J]. 电网技术, 2016, 40(7): 2067-2074. |
YAO Jun, GUO Lisha, ZENG Xin, et al. Research on HVRT control of DFIG system based on series grid-side converter during asymmetrical grid voltage swell[J]. Power System Technology, 2016, 40(7): 2067-2074. | |
[34] | XIE Z, ZHANG X G, ZHANG X, et al. Improved ride-through control of DFIG during grid voltage swell[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3584-3594. |
[35] | 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. |
WANG Tao, ZHU Ziqiang, NIAN Heng. Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. | |
[36] | MOHSENI M, MASOUM M A S, ISLAM S M. Low and high voltage ride-through of DFIG wind turbines using hybrid current controlled converters[J]. Electric Power Systems Research, 2011, 81(7): 1456-1465. |
[37] | YANG J, FLETCHER J, REILLY J. A series dynamic resistor-based converter protection scheme for doubly fed induction generator during various fault conditions[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 422-432. |
[38] | LOPEZ J, GUBIA E, OLEA E, et al. Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 4246-4254. |
[39] | 孙丽玲, 王艳娟. 电网电压不对称骤升时双馈风力发电机定子磁链暂态全过程及控制策略研究[J]. 高电压技术, 2019, 45(7): 2160-2166. |
SUN Liling, WANG Yanjuan. Study on transient whole-process and control strategy of stator flux in doubly-fed induction generator with asymmetric voltage swell[J]. High Voltage Engineering, 2019, 45(7): 2160-2166. | |
[40] | ZOU X D, ZHU D H, HU J B, et al. Mechanism analysis of the required rotor current and voltage for DFIG-based WTs to ride-through severe symmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7300-7304. |
[41] | WESSELS C, FUCHS F W. Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 807-815. |
[42] | 张公生, 王维庆, 王海云, 等. 考虑变直流母线电压参考值的直驱风电机组高电压穿越控制策略[J]. 可再生能源, 2022, 40(6): 816-821. |
ZHANG Gongsheng, WANG Weiqing, WANG Haiyun, et al. High voltage ride-through control strategy for direct-drive wind turbines considering variable DC bus voltage reference value[J]. Renewable Energy, 2022, 40(6): 816-821. | |
[43] | 王德胜, 颜湘武, 贾焦心, 等. 永磁直驱风机基于虚拟同步技术的高、低电压连续故障穿越策略[J]. 中国电机工程学报, 2022, 42(6): 2164-2175. |
WANG Desheng, YAN Xiangwu, JIA Jiaoxin, et al. High and low voltage continuous fault ride-through strategy based on virtual synchronization technology for permanent magnet direct drive fan[J]. Chinese Journal of Electrical Engineering, 2022, 42(6): 2164-2175. | |
[44] | 王德胜, 颜湘武, 刘辉, 等. 基于动态无功支撑的全功率变流风电机组高电压穿越改进控制[J]. 中国电机工程学报, 2022, 42(3): 957-968. |
WANG Desheng, YAN Xiangwu, LIU Hui, et al. Improved control of high voltage ride through of full-power converter wind turbine based on dynamic reactive power support[J]. Proceedings of the CSEE, 2022, 42(3): 957-967. | |
[45] | 张旭, 王怡, 刘伯文, 等. 基于转子无功电流动态调整的DFIG全过程高电压穿越策略[J]. 电力系统自动化, 2022, 46(22): 142-150. |
ZHANG Xu, WANG Yi, LIU Bowen, et al. Full-process high voltage ride-through strategy for doubly-fed induction generator based on dynamic adjustment of reactive current for rotor[J]. Automation of Electric Power Systems, 2022, 46(22): 142-150. | |
[46] | 周昌平, 汪震, 甘德强, 等. 双馈风机并网系统高电压穿越控制策略稳定性分析[J]. 中国电机工程学报, 2022, 42(20): 7415-7425. |
ZHOU Changping, WANG Zhen, GAN Deqiang, et al. Stability analysis of high voltage ride through control strategy for DFIG integrated system[J]. Proceedings of the CSEE, 2022, 42(20): 7415-7425. | |
[47] | 孙谊媊, 南东亮, 张公生. 含超级电容储能的直驱永磁风电机组高电压穿越控制策略[J]. 电气传动, 2018, 48(10): 48-52. |
SUN Yiqian, NAN Dongliang, ZHANG Gongsheng. High voltage ride through control strategy of direct-drive permanent magnet wind turbine with super capacitor energy storage[J]. Electric Drive, 2018, 48(10): 48-52. | |
[48] | WEI J, LI C B, WU Q W, et al. MPC-based DC-link voltage control for enhanced high-voltage ride-through of offshore DFIG wind turbine[J]. International Journal of Electrical Power & Energy Systems, 2021, 126: 106591. |
[49] | DASH P K, PATNAIK R K, MISHRA S P. Adaptive fractional integral terminal sliding mode power control of UPFC in DFIG wind farm penetrated multimachine power system[J]. Protection & Control of Modern Power Systems, 2018, 3 (1): 1-14. |
[50] | MOHSENI M, ISLAM S M. Transient control of DFIG-based wind power plants in compliance with the Australian grid code[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 2813-2824. |
[51] | 郑重, 耿华, 杨耕. 新能源发电系统并网逆变器的高电压穿越控制策略[J]. 中国电机工程学报, 2015, 35(6): 1463-1472. |
ZHENG Zhong, GENG Hua, YANG Geng. High voltage ride-through control strategy of grid-connected inverter for renewable energy systems[J]. Proceedings of the CSEE, 2015, 35(6): 1463-1472. | |
[52] | ZOU X D, ZHU D H, HU J B, et al. Mechanism analysis of the required rotor current and voltage for DFIG-based WTs to ride-through severe symmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2018, 33 (9): 7300-7304. |
[53] | 韩平平, 张海天, 丁明, 等. 大规模高压直流输电系统闭锁故障下送端风电场高电压穿越的控制策略[J]. 电网技术, 2018, 42(4): 1086-1092. |
HAN Pingping, ZHANG Haitian, DING Ming, et al. A coordinated HVRT strategy of large-scale wind power transmitted with HVDC system[J]. Power System Technology, 2018, 42(4): 1086-1092. | |
[54] | GUO Y F, WU Q W, GAO H L, et al. MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (4): 1731-1739. |
[55] | GONTIJO G F, TRICARICO T C, FRANCA B W, et al. Robust model predictive rotor current control of a DFIG connected to a distorted and unbalanced grid driven by a direct matrix converter[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (3): 1380-1392. |
[56] | YARAMASU V, WU B, ALEPUZ S, et al. Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC converter-based PMSG wind turbine[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6832-6843. |
[57] | WESSELS C, FUCHS F W. Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2011, 26 (3): 807-815. |
[58] | LI S H, XU L, HASKEW T A. Control of VSC-based STATCOM using conventional and direct-current vector control strategies[J]. International Journal of Electrical Power & Energy Systems, 2013, 45(1): 175-186. |
[59] | SHIDDIQ YUNUS A M, MASOUM M A S, ABU-SIADA A. Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(4): 5702009. |
[60] | WESSELS C, FUCHS F W. High voltage ride through with FACTS for DFIG based wind turbines[C]//2009 13th European Conference on Power Electronics and Applications. Barcelona, Spain:IEEE, 2009: 1-10. |
[61] | 刘金虹, 张辉, 李洁, 等. SMES用于双馈发电机故障穿越的研究[J]. 电工技术学报, 2015, 30(22): 199-205. |
LIU Jinhong, ZHANG Hui, LI Jie, et al. Application of SMES to improve fault voltage ride through capability of doubly fed induction generator[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 199-205. | |
[62] | DARABIAN M, JALILYAND A. Improving power system stability in the presence of wind farms using STATCOM and predictive control strategy[J]. IET Renewable Power Generation, 2018, 12(1): 98-111. |
[63] | ZHAO H R, WU Q W, GUO Q L, et al. Coordinated voltage control of a wind farm based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1440-1451. |
[64] | KIM J, SEOK J K, MUJADI E, et al. Adaptive Q-V scheme for the voltage control of a DFIG-based wind power plant[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3586-3599. |
[65] | GUO Y F, GAO H L, WU Q W, et al. Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2018, 9 (1): 474-487. |
[66] | WEI J, CAO Y J, WU Q W, et al. Coordinated droop control and adaptive model predictive control for enhancing HVRT and post-event recovery of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1549-1560. |
[67] | WEI J, WU Q W, LI C B, et al. Hierarchical event-triggered MPC-based coordinated control for HVRT and voltage restoration of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1819-1829. |
[68] | 姚伟, 熊永新, 姚雅涵, 等. 海上风电柔直并网系统调频控制综述[J]. 高电压技术, 2021, 47(10): 3397-3413. |
YAO Wei, XIONG Yongxin, YAO Yahan, et al. Overview of frequency modulation control of offshore wind power flexible straight and grid-connected systems[J]. High Voltage Technology, 2021, 47(10): 3397-3413. | |
[69] | 张浩博, 向往, 周猛, 等. 海上风电柔直并网系统主动能量控制与交流耗能装置协同策略[J]. 中国电机工程学报, 2022, 42(12): 4319-4330. |
ZHANG Haobo, XIANG Wang, ZHOU Meng, et al. Synergistic strategy of active energy control and AC energy-consuming devices of offshore wind power flexible and direct grid-connected systems[J]. Chinese Journal of Electrical Engineering, 2022, 42(12): 4319-4330. | |
[70] | 杨仁炘, 王霄鹤, 陈晴, 等. 机组协同-分布卸荷的风电场-柔直并网系统故障穿越方法[J]. 电力系统自动化, 2021, 45(21): 103-111. |
YANG Renxin, WANG Xiaohe, CHEN Qing, et al. Fault ride-through method of flexible HVDC transmission system for wind farm integration based on coordination of wind turbines and distributed braking resistors[J]. Automation of Electric Power Systems, 2021, 45(21): 103-111. | |
[71] | 武文强, 贾科, 陈金锋, 等. 基于谐波注入信息传递的海上风电柔直并网故障穿越方法[J]. 电力系统自动化, 2021, 45(21): 112-119. |
WU Wenqiang, JIA Ke, CHEN Jinfeng, et al. Fault ride-through method based on information transmission by harmonic injection for flexible DC integration of offshore wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 112-119. | |
[72] | LI W X, ZHU M, CHAO P P, et al. Enhanced FRT and postfault recovery control for MMC-HVDC connected offshore wind farms[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1606-1617. |
[73] | LIU J W, XU Y, DONG Z Y, et al. Retirement-driven dynamic VAR planning for voltage stability enhancement of power systems with high-level wind power[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2282-2291. |
[74] | HUANG S, WU Q W, LIAO W, et al. Adaptive droop-based hierarchical optimal voltage control scheme for VSC-HVdc connected offshore wind farm[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8165-8176. |
[75] | 宋斯珩, 赵书强, 邵冰冰, 等. 双馈风电场经柔直并网系统交互作用分析[J]. 太阳能学报, 2021, 42(4): 409-416. |
SONG Siheng, ZHAO Shuqiang, SHAO Bingbing, et al. Interaction analysis of DFIG-based wind farm integrated to grid through VSC-HVDC system[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 409-416. | |
[76] | 杨仁炘, 张琛, 蔡旭, 等. 海上风电-柔直并网系统自同步电压源控制与电网故障穿越[J]. 中国电机工程学报, 2022, 42(13): 4823-4834. |
YANG Renxin, ZHANG Chen, CAI Xu, et al. Self-synchronous voltage source control of offshore wind power-flexible direct grid-connected system and fault ride-through of power grid[J]. Proceedings of the CSEE, 2022, 42(13): 4823-4834. | |
[77] | ZHOU H Y, YAO W, ZHOU M, et al. Active energy control for enhancing AC fault ride-through capability of MMC-HVDC connected with offshore wind farms[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2705-2718. |
[78] | 樊肖杰, 迟永宁, 马士聪, 等. 大规模海上风电接入电网关键技术与技术标准的研究及应用[J]. 电网技术, 2022, 46(8): 2859-2870. |
FAN Xiaojie, CHI Yongning, MA Shicong, et al. Research and application of key technologies and technical standards for large-scale offshore wind power access to power grid[J]. Power Grid Technology, 2022, 46(8): 2859-2870. | |
[79] |
余浩, 张哲萌, 彭穗, 等. 海上风电经柔性直流并网技术标准对比分析[J]. 上海交通大学学报, 2022, 56(4): 403-412.
doi: 10.16183/j.cnki.jsjtu.2021.465 |
YU Hao, ZHANG Zhemeng, PENG Sui, et al. Comparative analysis of technical standards for offshore wind power via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. |
[1] | 田书欣, 韩雪, 符杨, 苏向敬, 李振坤. 计及海上风电不确定性的输电网两阶段鲁棒扩展规划[J]. 上海交通大学学报, 2024, 58(9): 1400-1409. |
[2] | 胡志强, 刘鸣飞, 李琦, 李心雨, 鲍劲松. 基于多源异构数据的风机多模态装配工艺知识图谱建模[J]. 上海交通大学学报, 2024, 58(8): 1249-1263. |
[3] | 段佳南, 谢俊, 邢单玺. 风电-光伏-抽蓄-电制氢多主体能源系统增益的合作博弈分配策略[J]. 上海交通大学学报, 2024, 58(6): 872-880. |
[4] | 余浩, 黎灿兵, 叶志亮, 彭穗, 任万鑫, 陈思捷, 唐彬伟, 陈达伟. 计及尾流效应的风电场短路故障动态等值建模[J]. 上海交通大学学报, 2024, 58(6): 798-805. |
[5] | 范宏, 杨忠权, 夏世威. 考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J]. 上海交通大学学报, 2024, 58(5): 624-635. |
[6] | 喻西崇1, 刘 超1, 刘小燕1, 李志川2, 吴雨霏1, 李欧萍1. 海上风电运维技术和运维策略特点分析[J]. 海洋工程装备与技术, 2024, 11(3): 18-21. |
[7] | 董 鑫, 徐 群, 邵云亮. 系泊连接装置发展现状及其在漂浮式风电中的应用[J]. 海洋工程装备与技术, 2024, 11(1): 130-138. |
[8] | 刘 超, 李欧萍, 程光远, 沈 琦, 喻西崇. 深远海风电制氢技术经济性分析[J]. 海洋工程装备与技术, 2024, 11(1): 116-121. |
[9] | 钟科星, 丁乐声, 张 聪, 毛彦东, 陈金龙. 基于神经网络的风电海缆弯曲限制器优化设计[J]. 海洋工程装备与技术, 2024, 11(1): 70-76. |
[10] | 卫慧, 陈鹏, 张芮菡, 程正顺. 基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法[J]. 上海交通大学学报, 2023, 57(S1): 37-45. |
[11] | 刘新宇, 王森, 曾龙, 原绍恒, 郝正航, 逯芯妍. 双馈风电场抑制电网低频振荡的自适应附加控制策略[J]. 上海交通大学学报, 2023, 57(9): 1156-1164. |
[12] | 陈世伟. 海上风电导管架立式建造关键吊装技术[J]. 海洋工程装备与技术, 2023, 10(3): 83-89. |
[13] | 高畅, 李红涛. 海上风电制氢关键技术及突围路径[J]. 海洋工程装备与技术, 2023, 10(2): 89-94. |
[14] | 李红涛, 杨林林, 曲晓奇, 孙涛. 海上浮式风电装备关键技术工程探索与实践[J]. 海洋工程装备与技术, 2023, 10(2): 79-88. |
[15] | 樊长辉. 海上风机单桩基础沉桩施工作业要点概述[J]. 海洋工程装备与技术, 2023, 10(2): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||