上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (1): 7-12.doi: 10.16183/j.cnki.jsjtu.2018.01.002
李洋洋,史历程,万卫兵,赵群飞
出版日期:
2018-01-01
发布日期:
2018-01-01
LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei
Online:
2018-01-01
Published:
2018-01-01
摘要: 提出了一种新的三维物体检测方法.在物体定位部分,采用随机采样一致和欧式聚类算法分割三维物体点云以减少计算量;在物体识别部分,将物体点云转化为深度图像,利用k-Means聚类算法学习卷积核,利用卷积网络提取卷积特征,从而提高图像的识别率,并在2个公开的三维物体数据集上对所提出的特征提取算法进行测试.结果表明,与传统的点云特征提取方法相比,基于卷积网络的特征提取方法的识别率较高.
中图分类号:
李洋洋,史历程,万卫兵,赵群飞. 基于卷积神经网络的三维物体检测方法[J]. 上海交通大学学报(自然版), 2018, 52(1): 7-12.
LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection[J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12.
[1]SCHAAL S. The new robotics-towards human-centered machines[J]. HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 2007, 1(2): 115-126. [2]HUAI J, ZHANG Y, YILMAZ A. Real-time large scale 3D reconstruction by fusing Kinect and IMU data[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015, II-3/W5, 491-496. [3]WHELAN T, KASESS M, JOHANNSSON H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4/5): 598-626. [4]LAI K, BO L, REN X, et al. Detection-based object labeling in 3D scenes[C]∥International Conference on Robotics and Automation (ICRA). Minnesota, USA: IEEE, 2012: 1330-1337. [5]LAI K, BO L, FOX D. Unsupervised feature learning for 3D scene labeling[C]∥International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 3050-3057. [6]SONG S, XIAO J. Sliding shapes for 3D object detection in depth images[C]∥Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer International Publishing, 2014: 634-651. [7]ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 2147-2154. [8]RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]∥International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3212-3217. [9]RUSU R B, BRADSKI G, THIBAUX R, et al. Fast 3D recognition and pose using the viewpoint feature histogram[C]∥International Conference on Intelligent Robots and Systems (IROS). Taipei, China: IEEE, 2010: 2155-2162. [10]ALDOMA A, VINCZE M, BLODOW N, et al. CAD-model recognition and 6DOF pose estimation using 3D cues[C]∥International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE, 2011: 585-592. [11]BO L F, REN X F, FOX D. Depth kernel descriptors for object recognition[C]∥International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 821-826. [12]湛宁. 多特征和 SVM 相融合的三维物体识别方法[J]. 计算机仿真, 2013, 30(3): 380-383. ZHAN Ning. Three-dimensional object recognition method based on multiple features and support vector machine[J]. Computer Simulation, 2013, 30(3): 380-383. [13]LAI K, BO L F, REN X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]∥International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 1817-1824. [14]WOHLKINGER W, ALDOMA A, RUSU R B, et al. 3DNet: Large-scale object class recognition from CAD models[C]∥International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012: 5384-5391. [15]COATES A, NG A Y. Learning feature representations with K-means[J]. Lecture Notes in Computer Science, 2012, 7700: 561-580. [16]COATES A, NG A, LEE H. An analysis of single-layer networks in unsupervised feature learning[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. 2011: 215-223. [17]KRIZHEVSKY A, SUTSKEEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84-90. |
[1] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[2] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
[3] | 全大英, 陈赟, 唐泽雨, 李世通, 汪晓锋, 金小萍. 基于双通道卷积神经网络的雷达信号识别[J]. 上海交通大学学报, 2022, 56(7): 877-885. |
[4] | 赵勇, 苏丹. 基于4种长短时记忆神经网络组合模型的畸形波预报[J]. 上海交通大学学报, 2022, 56(4): 516-522. |
[5] | 孙棪伊, 范文晶, 曾远帆, 干兴业, 汤日佳, 韩锐. 基于Harris角点检测的装填靶标识别方法[J]. 空天防御, 2022, 5(4): 87-91. |
[6] | 许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. |
[7] | 王 屹. 单点吊装作业视景仿真应用研究[J]. 海洋工程装备与技术, 2022, 9(2): 38-42. |
[8] | 乐健, 刘一春, 张华, 陈小奇. 基于失真信号滤波算法的送丝速度检测方法[J]. 上海交通大学学报, 2022, 56(10): 1334-1340. |
[9] | 韩超, 陈敏, 黄宇昊, 赵明辉, 杜乾坤, 梁庆华. 基于全局特征描述子的激光SLAM回环检测方法[J]. 上海交通大学学报, 2022, 56(10): 1379-1387. |
[10] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[11] | 许凌, 王兴志, 肖林朋. 基于语义特征抓取电网调度事件的检测技术[J]. 上海交通大学学报, 2021, 55(S2): 86-91. |
[12] | 李元, 姚宗禹. 基于邻域保持嵌入的主多项式非线性过程故障检测[J]. 上海交通大学学报, 2021, 55(8): 1001-1008. |
[13] | 冯新, 付庄, 王科瑾, 郝高峰. 基于SSP补偿和变频控制的滑环设计[J]. 上海交通大学学报, 2021, 55(7): 814-825. |
[14] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
[15] | 何夏维, 蔡云泽, 严玲玲. 一种合成残差式的反作用轮故障检测方法[J]. 上海交通大学学报, 2021, 55(6): 716-728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||