上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (1): 7-12.doi: 10.16183/j.cnki.jsjtu.2018.01.002
李洋洋,史历程,万卫兵,赵群飞
发布日期:
2018-01-01
LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei
Published:
2018-01-01
摘要: 提出了一种新的三维物体检测方法.在物体定位部分,采用随机采样一致和欧式聚类算法分割三维物体点云以减少计算量;在物体识别部分,将物体点云转化为深度图像,利用k-Means聚类算法学习卷积核,利用卷积网络提取卷积特征,从而提高图像的识别率,并在2个公开的三维物体数据集上对所提出的特征提取算法进行测试.结果表明,与传统的点云特征提取方法相比,基于卷积网络的特征提取方法的识别率较高.
中图分类号:
李洋洋,史历程,万卫兵,赵群飞. 基于卷积神经网络的三维物体检测方法[J]. 上海交通大学学报, 2018, 52(1): 7-12.
LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 7-12.
[1]SCHAAL S. The new robotics-towards human-centered machines[J]. HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 2007, 1(2): 115-126. [2]HUAI J, ZHANG Y, YILMAZ A. Real-time large scale 3D reconstruction by fusing Kinect and IMU data[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015, II-3/W5, 491-496. [3]WHELAN T, KASESS M, JOHANNSSON H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4/5): 598-626. [4]LAI K, BO L, REN X, et al. Detection-based object labeling in 3D scenes[C]∥International Conference on Robotics and Automation (ICRA). Minnesota, USA: IEEE, 2012: 1330-1337. [5]LAI K, BO L, FOX D. Unsupervised feature learning for 3D scene labeling[C]∥International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 3050-3057. [6]SONG S, XIAO J. Sliding shapes for 3D object detection in depth images[C]∥Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer International Publishing, 2014: 634-651. [7]ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 2147-2154. [8]RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]∥International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3212-3217. [9]RUSU R B, BRADSKI G, THIBAUX R, et al. Fast 3D recognition and pose using the viewpoint feature histogram[C]∥International Conference on Intelligent Robots and Systems (IROS). Taipei, China: IEEE, 2010: 2155-2162. [10]ALDOMA A, VINCZE M, BLODOW N, et al. CAD-model recognition and 6DOF pose estimation using 3D cues[C]∥International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE, 2011: 585-592. [11]BO L F, REN X F, FOX D. Depth kernel descriptors for object recognition[C]∥International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 821-826. [12]湛宁. 多特征和 SVM 相融合的三维物体识别方法[J]. 计算机仿真, 2013, 30(3): 380-383. ZHAN Ning. Three-dimensional object recognition method based on multiple features and support vector machine[J]. Computer Simulation, 2013, 30(3): 380-383. [13]LAI K, BO L F, REN X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]∥International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 1817-1824. [14]WOHLKINGER W, ALDOMA A, RUSU R B, et al. 3DNet: Large-scale object class recognition from CAD models[C]∥International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012: 5384-5391. [15]COATES A, NG A Y. Learning feature representations with K-means[J]. Lecture Notes in Computer Science, 2012, 7700: 561-580. [16]COATES A, NG A, LEE H. An analysis of single-layer networks in unsupervised feature learning[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. 2011: 215-223. [17]KRIZHEVSKY A, SUTSKEEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84-90. |
[1] | 温桠妮, 颜国正, 王志武, 姜萍萍, 薛蓉蓉, 王艺芸. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123. |
[2] | 经小龙, 胡源, 郭为忠. 臂载线结构激光手眼矩阵的精确标定——多坐标系转换法[J]. 上海交通大学学报, 2020, 54(6): 607-614. |
[3] | 张建军, 吴中华, 刘群坡, 王红旗, 刘卫东. 主从机械手遥操作双边自适应阻抗控制策略[J]. 上海交通大学学报, 2020, 54(6): 615-623. |
[4] | 张铁, 肖蒙, 邹焱飚, 肖佳栋. 基于模糊迭代算法的曲面恒力跟踪[J]. 上海交通大学学报, 2020, 54(4): 344-351. |
[5] | 高晋阳, 颜国正, 石云波, 刘俊. 肠道微型仿尺蠖式机器人机载供能线圈优化[J]. 上海交通大学学报, 2020, 54(2): 152-159. |
[6] | 蒲鹏先,颜国正,王志武,韩玎,柯全,汪炜,李达伟. 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019, 53(10): 1143-1150. |
[7] | 鲁姗,王志武,颜国正,周泽润. 仿生人工肛门括约肌假体的机构设计和实验验证[J]. 上海交通大学学报, 2019, 53(10): 1151-1158. |
[8] | 张建军,刘卫东,李乐,程瑞锋,郑海峰. 未知环境下水下机械手智能抓取的自适应阻抗控制[J]. 上海交通大学学报(自然版), 2019, 53(3): 341-347. |
[9] | 苏程,叶佳楠,李巍,丁旺才,赵志刚. 欠约束多机协调吊运系统动力学工作空间分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 225-231. |
[10] | 胡兵,杨明,郭林栋,王春香,王冰. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 203-208. |
[11] | 武文汉a,b,杨明a,b,王冰a,b,王春香c. 一种基于轮廓匹配的仓储机器人托盘检测方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 197-202. |
[12] | 鲍义东1,2,吴冬梅1. 自适应细分及优化编码八叉树碰撞检测算法[J]. 上海交通大学学报(自然版), 2015, 49(08): 1114-1122. |
[13] | 赵志刚1,滕富军1,石广田1,李劲松2,季钢2. 多机器人联合吊运系统可行域分析与求解[J]. 上海交通大学学报(自然版), 2015, 49(08): 1174-1180. |
[14] | 王秀青1,侯增广2,曾慧3,吕锋1,潘世英1. 基于多传感器信息融合的机器人故障诊断[J]. 上海交通大学学报(自然版), 2015, 49(06): 793-798. |
[15] | 郑军,邱强,李鹏,潘际銮. 基于双自由度万向轮机构的爬壁机器人运动状态检测[J]. 上海交通大学学报(自然版), 2015, 49(03): 379-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||