[1] |
CHING H L, HALE M F, MCALINDON M E. Cur-rent and future role of magnetically assisted gastriccapsule endoscopy in the upper gastrointestinal tract[J]. Therapeutic Advances in Gastroenterology, 2016,9(3): 313-321.
|
[2] |
MENCIASSI A, STEF ANINI C, GORINI S, et al. Locomotion of a legged capsule in the gastrointestinaltract: Theoretical study and preliminary technologi-cal results [C]//The 26th Annual International Con-ference of the IEEE Engineering in Medicine and Bi-ology Society. San Francisco, CA, USA: IEEE, 2004:2767-2770.
|
[3] |
TORTORA G, V ALDASTRI P, SUSILO E, et al.Propeller-based wireless device for active capsular en-doscopy in the gastric district [J]. Minimally InvasiveTherapy & Allied Technologies, 2009, 18(5): 280-290.
|
[4] |
G A O J Y , Y A N G Z , W A N G Z W , e t a l . A c a p s u l erobot powered by wireless power transmission: Designof its receiving coil [J]. Sensors and Actuators A: Phys-ical, 2015, 234: 133-142.
|
[5] |
LEE C, CHOI H, GO G, et al. Active locomo-tive intestinal capsule endoscope (ALICE) system: Aprospective feasibility study [J]. IEEE/ASME Trans-actions on Mechatronics, 2015, 20(5): 2067-2074.
|
[6] |
BOLOTNIK N, NUNUPAROV A, CHASHCHUKHINV. Dynamics and control of motion of a capsule robotwith an opposing spring [C]//2016 International Con-ference Stability and Oscillations of Nonlinear ControlSystems (Pyatnitskiy’s Conference). Moscow, Russia:IEEE, 2016: 1-4.
|
[7] |
ZHANG Y S, YU Z C, YANG H Y, et al. Orthogonaltransformation operation theorem of a spatial univer-sal uniform rotating magnetic field and its applicationin capsule endoscopy [J]. Science China TechnologicalSciences, 2017, 60(6): 854-864.
|
[8] |
IV ANOV A P. Analysis of an impact-driven capsulerobot [J]. International Journal of Non-Linear Me-chanics, 2020, 119: 103257.
|
[9] |
GORINI S, QUIRINI M, MENCIASSI A, et al. A novelSMA-based actuator for a legged endoscopic capsule[C]//The First IEEE/RAS-EMBS International Con-ference on Biomedical Robotics and Biomechatronics.Pisa, Italy: IEEE, 2006: 443-449.
|
[10] |
KIM H M, YANG S, KIM J, et al. Active locomotion ofa paddling-based capsule endoscope in an in vitro andin vivo experiment (with videos) [J]. GastrointestinalEndoscopy, 2010, 72(2): 381-387.
|
[11] |
BUSELLI E, V ALDASTRI P, QUIRINI M, et al. Su-perelastic leg design optimization for an endoscopiccapsule with active locomotion [J]. Smart Materialsand Structures, 2009, 18(1): 015001.
|
[12] |
W ANG X, SLIKER L J, QI H J, et al. A quasi-staticmodel of wheel-tissue interaction for surgical robotics[J]. Medical Engineering & Physics, 2013, 35(9): 1368-1376.
|
[13] |
W ANG K, YAN G. Micro robot prototype forcolonoscopy and in vitro experiments [J]. Journal ofMedical Engineering & Technology, 2007, 31(1): 24-28.
|
[14] |
W ANG K D, YAN G Z, JIANG P P, et al. A wirelessrobotic endoscope for gastrointestine [J]. IEEE Trans-actions on Robotics, 2008, 24(1): 206-210.
|
[15] |
ZARROUK D, SHOHAM M. Analysis and design ofone degree of freedom worm robots for locomotion onrigid and compliant terrain [J]. Journal of MechanicalDesign, 2012, 134(2): 021010.
|
[16] |
PARK H J, KIM D, KIM B. A robotic colonoscopewith long stroke and reliable leg clamping [J]. Interna-tional Journal of Precision Engineering and Manufac-turing, 2012, 13(8): 1461-1466.
|
[17] |
NADERI N, NAJARIAN S, HOSSEINALI A, et al.Modeling and dynamic analysis of the worm-like partof an innovative robot applicable in colonoscopy [J]. The International Journal of Medical Robotics andComputer Assisted Surgery, 2013, 9(3): 371-378.
|
[18] |
LEE K M, KIM Y, PAIK J K, et al. Clawed minia-ture inchworm robot driven by electromagnetic oscilla-tory actuator [J]. Journal of Bionic Engineering, 2015,12(4): 519-526.
|
[19] |
LIN W, SHI Y T, JIA Z W, et al. Design of a wire-less anchoring and extending micro robot system for gastrointestinal tract [J]. The International Journal of Medical Robotics + Computer Assisted Surgery: MR-CAS, 2013, 9(2): 167-179.
|
[20] |
HE S, YAN G Z, W ANG Z W, et al. Characteris-tics of locomotion efficiency of an expanding-extending robotic endoscope in the intestinal environment [J].Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2015,229(7): 515-523.
|
[21] |
GAO J Y, ZHANG Z L, YAN G Z. Development ofa capsule robot for exploring the colon [J]. Microma-chines, 2019, 10(7): 456.
|
[22] |
BELLINI C, GLASS P, SITTI M, et al. Biaxial me-chanical modeling of the small intestine [J]. Journalof the Mechanical Behavior of Biomedical Materials,2011, 4(8): 1727-1740.
|
[23] |
CIARLETTA P, DARIO P, TENDICK F, et al. Hyper-elastic model of anisotropic fiber reinforcements withinintestinal walls for applications in medical robotics [J].The International Journal of Robotics Research, 2009,28(10): 1279-1288.
|
[24] |
LIAO D H, ZHAO J B, GREGERSEN H. 3D me-chanical properties of the partially obstructed Guineapig small intestine [J]. Journal of Biomechanics, 2010,43(11): 2079-2086.
|
[25] |
SOKOLIS D P, SASSANI S G. Microstructure-basedconstitutive modeling for the large intestine validatedby histological observations [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21: 149-166.
|
[26] |
SUN D M, ZHAO J B, LIAO D H, et al. Shear mod-ulus of the partially obstructed rat small intestine [J].Annals of Biomedical Engineering, 2017, 45(4): 1069-1082.
|
[27] |
HOSSEINI H S, TAYLOR J S, WOOD L S Y, et al.Biomechanics of small intestine during distraction enterogenesis with an intraluminal spring [J]. Journal of the Mechanical Behavior of Biomedical Materials,2020, 101: 103413.
|