[1] Makridakis S, Wheelwright S, Hyndman R. Forecasting: Methods and applications [M]. New York: Wiley, 1998.[2] Kuo R J, Xue K C. Fuzzy neural networks with application to sales forecasting [J]. Fuzzy Sets and Systems, 1999, 108(2): 123-143.[3] Wagner N, Michalewicz Z, Khouja M, et al. Time series forecasting for dynamic environments: The DyFor genetic program model [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(4): 433-452.[4] Kulesh M, Holschneider M, Kurennaya K. Adaptive metrics in the nearest neighbours method [J]. Physica D, 2008, 237(5): 283-291.[5] Small M, Tse C K. Optimal embedding parameters: A modeling paradigm [J]. Physica D, 2004, 194(3-4): 283-296.[6] Cao L J, Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transaction on Neural Networks, 2003, 14(6): 1506-1518.[7] Huang K, Yu T H K. Ratio-based lengths of intervals to improve fuzzy time series forecasting [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, 2006, 36(2): 328-340.[8] Yu H K. A refined fuzzy time-series model for forecasting [J]. Physica A, 2005, 346(3-4): 657-681.[9] Huang K, Yu H K. An N-th order heuristic fuzzy time series model for TAIEX forecasting [J]. International Journal of Fuzzy Systems, 2003, 5(4): 247-253.[10] Sfetsos A, Siriopoulos C. Time series forecasting with a hybrid clustering scheme and pattern recognition [J]. IEEE Transactions on System, Man, and Cybernetics. Part A: Systems and Humans, 2004, 34(3): 399-405.[11] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model [J]. Neurocomputing, 2003, 50(1): 159-175.[12] Murray D B. Forecasting a chaotic time series using an improved metric for embedding space [J]. Physica D, 1993, 68(8): 318-325.[13] Cao L. Practical method for determining the minimum embedding dimension of a scalar time series [J]. Physica D, 1997, 110(1-2): 43-50.[14] Weigend A S, Gershenfeld N A. Results of the time series prediction competition at the Santa Fe Institute [C]// IEEE International Conference on Neural Networks. San Francisco, USA: IEEE, 1993: 1786-1793. |