Journal of Shanghai Jiao Tong University ›› 2020, Vol. 54 ›› Issue (4): 376-386.doi: 10.16183/j.cnki.jsjtu.2020.04.006
Previous Articles Next Articles
LI Chunxiang,ZHANG Haoyi
Online:
2020-04-28
Published:
2020-04-30
CLC Number:
LI Chunxiang, ZHANG Haoyi. Hybridizing Multivariate Empirical Mode Decomposition and Extreme Learning Machine to Predict Non-Stationary Processes[J]. Journal of Shanghai Jiao Tong University, 2020, 54(4): 376-386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.04.006
[1]张慧超. 基于LSSVM风压分布预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. ZHANG Huichao. Research on the prediction of wind pressure distribution based on LSSVM[D]. Harbin: Harbin Institute of Technology, 2015. [2]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. [3]LIU H, TIAN H Q, LI Y F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J]. Energy Conversion & Management, 2015, 100: 16-22. [4]YANG D, YANG K. Multi-step prediction of strong earthquake ground motions and seismic responses of SDOF systems based on EMD-ELM method[J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 117-129. [5]PENG T, ZHOU J Z, ZHANG C, et al. Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine[J]. Energy Conversion & Management, 2017, 153: 589-602. [6]LI S, WANG P, GOEL L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine[J]. Electric Power Systems Research, 2015, 122: 96-103. [7]张永康, 李春祥, 郑晓芬, 等.基于混合人工蜂群和人工鱼群优化的LSSVM脉动风速预测[J].振动与冲击, 2017, 36(15): 203-209. ZHANG Yongkang, LI Chunxiang, ZHENG Xiaofen, et al. Fluctuating wind velocity forecasting of hybridizing artificial bee colony and artificial fish swarm optimization based LSSVM [J]. Journal of Vibration and Shock, 2017, 36(15): 203-209. [8]REHMAN N, MANDIC D P. Multivariate empirical mode decomposition[J]. Proceedings of the Royal Society, 2010(488): 1291-1392. [9]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995. [10]王尊. 多变量经验模态分解在化工过程故障诊断中的应用研究[D]. 北京: 北京化工大学, 2015. WANG Zun. Application research on multivariate empirical mode decomposition in chemical process fault diagnosis[D]. Beijing: Beijing University of Chemical Technology, 2015. [11]HE K, ZHA R, WU J, et al. Multivariate EMD-based modeling and forecasting of crude oil price[J]. Sustainability, 2016, 8(4): 387. [12]LOONEY D, GOVERDOVSKY V, KIDMOSE P, et al. Subspace denoising of EEG artefacts via multivariate EMD[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014: 4688-4692. [13]中华人民共和国交通部. 公路斜拉桥设计细则:JTG/T D65-01-2007[S]. 北京:人民交通出版社, 2007. Ministry of Communications of the People’s Republic of China. Guidelines for design of highway cable-stayed bridge: JTG/T D65-01-2007[S]. Beijing: China Communications Press, 2007. [14]张志宏, 刘中华, 董石麟. 强台风作用下大跨空间索桁体系现场风压风振实测研究[J]. 上海师范大学学报(自然科学版), 2013, 42(5): 546-550. ZHANG Zhihong, LIU Zhonghua, DONG Shilin. Study on wind vibration and wind pressure of long-pan space cable-truss system under strong typhoon[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 42(5): 546-550. |
[1] | LI Hengjie, ZHU Jianghao, FU Xiaofei, FANG Chen, LIANG Daming, ZHOU Yun. Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1004-1013. |
[2] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[3] | XIAO Ran, WEI Ziqing, ZHAI Xiaoqiang. Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 331-336. |
[4] | ZHANG Zhanluo (张战罗), ZHANG Zhinan (张执南), EIKEVIK Trygve Magne, SMITT Silje Marie. Ventilation System Heating Demand Forecasting Based on Long Short-Term Memory Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 129-137. |
[5] | LIAO Qishu, HU Weihao, CAO Di, HUANG Qi, CHEN Zhe. Distributed Photovoltaic Net Load Forecasting in New Energy Power Systems [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1520-1531. |
[6] | ZHONG Guangyao, TAI Nengling, HUANG Wentao, LI Ran, FU Xiaofei, JI Kunhua. Attention Short-Term Forecasting Method of Distribution Load Based on Multi-Dimensional Clustering [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1532-1543. |
[7] | TAN Jia, LI Zhiyi, YANG Huan, ZHAO Rongxiang, JU Ping. A Multi-Level Collaborative Load Forecasting Method for Distribution Networks Based on Distributed Optimization [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. |
[8] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[9] | LIN Haibo (林海波), GAO Zhibin (高志彬), YI Chuijie (仪垂杰), LIN Tianran (林天然). Simulation Study on Multi-Rate Time-Frequency Analysis of Non-Stationary Signals [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 798-802. |
[10] | Zhao Zheng, Li Xiaolong. Research on Line of Sight Angular Acceleration Filtering Algorithm Based on Steepest Tracking-Differentiator [J]. Air & Space Defense, 2018, 1(2): 59-63. |
[11] |
LUO Huayi,WANG Jingcheng,YANG Liwen,LI Xiaocheng.
Research and Application of Urban Water Demand Forecasting Based on Time Difference Coefficient [J]. Journal of Shanghai Jiaotong University, 2017, 51(10): 1260-1267. |
[12] | JIANG Shizheng,XU Rong,CHEN Qimei. Complex Network Short-Term Traffic Forecasting Based on Lasso-NN Model [J]. Journal of Shanghai Jiaotong University, 2015, 49(02): 281-286. |
[13] | PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波), LIU Hua-shan1 (刘华山). Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(4): 434-442. |
[14] | LI Fu-Dong-1, 2 , WU Min-1, FENG Gao-Yi-3. Wind Power Slope Events Classification and Forecasting Based on Statistical Analysis and Multiple Support Vector Machines [J]. Journal of Shanghai Jiaotong University, 2012, 46(12): 1971-1976. |
[15] | ZHANG Yang (张 扬), WANG Meng-ling (王梦灵). Peak Traffic Forecasting Using Nonparametric Approaches [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(1): 76-081. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||