J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (2): 209-219.doi: 10.1007/s12204-024-2711-6
• Engieering and Technology • Next Articles
刘欣悦1,孙唯铭1,何梦凡1,方远1,DJOULDE Aristide 1,丁卫1,刘梅1,2,孟令军3,王志明1*
1. 上海大学 机电工程与自动化学院,上海 200444;
2. 浙江大学 流体动力与机电系统国家重点实验室,杭州 310058;
3. 中北大学 仪器与电子学院,太原 030051
Accepted:
2023-11-24
Online:
2025-03-21
Published:
2025-03-21
CLC Number:
LIU Xinyue, SUN Weiming, HE Mengfan, FANG Yuan, DJOULDE Aristide, DING Wei, LIU Mei, MENG Lingjun, WANG Zhiming. Unidirectionally Sensitive Flexible Resistance Strain Sensor Based on AgNWs/PDMS[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 209-219.
[1] MA Y J, ZHANG Y C, CAI S S, et al. Flexible hybrid electronics for digital healthcare [J]. Advanced Materials, 2020, 32(15): 1902062. [2] WANG T, YANG H, QI D P, et al. Mechano-based transductive sensing for wearable healthcare [J]. Small, 2018, 14(11): e1702933. [3] WU Y Z, ZHOU Y L, ASGHAR W, et al. Liquid metal-based strain sensor with ultralow detection limit for human–machine interface applications [J]. Advanced Intelligent Systems, 2021, 3(10): 2170073. [4] WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene [J]. Advanced Functional Materials, 2019, 29(16): 1808695. [5] SUN Z J, YANG S, ZHAO P F, et al. Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring [J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13287-13295. [6] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion [J]. ACS Nano, 2015, 9(6): 5929-5936. [7] YANG G, XING R Q, LI Y F, et al. Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity [J]. Chemical Engineering Journal, 2021, 426: 131931. [8] MA C, ZHOU R Y, XIE L J. Recent advances in flexible pressure/strain sensors using carbon nanotubes [J]. International Journal of Agricultural and Biological Engineering, 2022, 15(2): 1-12. [9] KANOUN O, BOUHAMED A, RAMALINGAME R, et al. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors [J]. Sensors, 2021, 21(2): 341. [10] DUAN L Y, D’HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application [J]. Progress in Materials Science, 2020, 114: 100617. [11] KIM K K, HONG S, CHO H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks [J]. Nano Letters, 2015, 15(8): 5240-5247. [12] MOUSAVI S, HOWARD D, ZHANG F H, et al. Direct 3D printing of highly anisotropic, flexible, constriction-resistive sensors for multidirectional proprioception in soft robots [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15631-15643. [13] YANG G, TANG X C, ZHAO G D, et al. Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications [J]. Chemical Engineering Journal, 2022, 435: 135004. [14] RAHIMI R, OCHOA M, YU W Y, et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization [J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4463-4470. [15] LIM M, LIANG J M, ZHANG M. Unidirectional sensitive flexible sensor for bending measurements [J]. Current Applied Physics, 2021, 23: 36-41. [16] XU C, MIAO L M, WANG H B, et al. A flexible pain sensor based on PDMS-AgNWs [J]. IEEE Transactions on Nanotechnology, 2021, 20: 137-142. [17] ZHU X X, ZHOU Y M, YE C. Preparation and performance of AgNWs/PDMS film-based flexible strain sensor [J]. Materials, 2023, 16(2): 641. [18] ZHANG X, MA Y Q, MA L. Studies on flexible strain sensor based on AgNWs-PDMS electrodes [C]//2019 20th International Conference on Electronic Packaging Technology. Hong Kong: IEEE, 2019: 1-4. [19] TAN X Q, ZHENG J M. A novel porous PDMS-AgNWs-PDMS (PAP)-sponge-based capacitive pressure sensor [J]. Polymers, 2022, 14(8): 1495. [20] SI Z H, LI J F, MA L, et al. The ultrafast and continuous fabrication of a polydimethylsiloxane membrane by ultraviolet-induced polymerization [J]. Angewandte Chemie International Edition, 2019, 58(48): 17175-17179. [21] TANG M, JIANG Z, WANG Z K, et al. High-adhesion PDMS/Ag conductive composites for flexible hybrid integration [J]. Chemical Engineering Journal, 2023, 451: 138730. [22] GAO K P, WANG Q J, TANG J Q, et al. A method for simultaneously preparing crack-based and composite-based PDMS strain sensors by mixing AgNWs and Ag microparticles [J]. Engineering Research Express, 2023, 5(1): 015080. [23] ZHANG Y J, HE P, LUO M, et al. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring [J]. Nano Research, 2020, 13(4): 919-926. [24] LIU M Y, HANG C Z, WU X Y, et al. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices [J]. Nanotechnology, 2022, 33(25): 255501. [25] HU Y M, ZHANG F J, SHAO Y M, et al. The influence of sensitive gate structure parameters of strain gauge on measurement accuracy [J]. Journal of Chongqing University, 2013, 36(12): 21-27 (in Chinese). [26] QIN X Z, PENG Y, LI P P, et al. Silk fibroin and ultra-long silver nanowire based transparent, flexible and conductive composite film and its Temperature-Dependent resistance [J]. International Journal of Optomechatronics, 2019, 13(1): 41-50. [27] WU Y C, KARAKURT I, BEKER L, et al. Piezoresistive stretchable strain sensors with human machine interface demonstrations [J]. Sensors and Actuators A: Physical, 2018, 279: 46-52. [28] KIM J, OH S, YOON S H. Parameter study of microwave assisted exfoliation of graphite and its application to large deformation strain sensors [C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 1699-1702. [29] LEE C J, PARK K H, HAN C J, et al. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors [J]. Scientific Reports, 2017, 7: 7959. [30] AMJADI M, PICHITPAJONGKIT A, LEE S J, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite [J]. ACS Nano, 2014, 8(5): 5154-5163. [31] LIU X B, LIANG X W, LIN Z Q, et al. Highly sensitive and stretchable strain sensor based on a synergistic hybrid conductive network [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42420-42429. [32] ZHANG Y L, GUO X, WANG W, et al. Highly sensitive, low hysteretic and flexible strain sensor based on ecoflex-AgNWs-MWCNTs flexible composite materials [J]. IEEE Sensors Journal, 2020, 20(23): 14118-14125. [33] CHENG R, ZENG J S, WANG B, et al. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor [J]. Chemical Engineering Journal, 2021, 424: 130565. |
[1] | LI Longyue, WANG Wenhao, PI Li, JIA Zhonghui, ZHAO Huizhen. Overview of Simulation and Deduction Methods for Air Defense and Anti-Missile Warfare [J]. Air & Space Defense, 2025, 8(1): 48-53. |
[2] | LUO Chunmiao, FU Shixiao, ZHANG Mengmeng, CHEN Kunpeng, CUI Xiaoxuan. Effect of Wear-Resistant Tape Layers on Torsional Characteristics of Unbonded Flexible Pipes Under Internal Pressure [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 121-130. |
[3] | LIU Shu, ZHOU Min, GAO Yuanhai, XU Xiaoyuan, YAN Zheng. A Data-Driven Method Embedded with Topological Information for Voltage-Power Sensitivity Estimation in Distribution Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 855-862. |
[4] | QIU Kang. Drawdown Pressure Model of Low Porosity and Permeability Matrix Sandstone Gas Reservoir Test with Multi-Factor Restrictions [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 30-36. |
[5] | YE Zhiliang, LI Canbing, ZHANG Yongjun, LI Licheng, XIAO Yinjing, WU Yuhang, TAI Nengling. Optimization of Day-Ahead Dispatch Time Resolution in Power System with a High Proportion of Climate-Sensitive Renewable Energy Sources [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 781-790. |
[6] | SI Shengping, GUO Qiang, YANG Lin, ZHOU Chun, WANG Rui. Channel Performance Analysis of High-Sensitivity Receiver [J]. Air & Space Defense, 2023, 6(1): 78-84. |
[7] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[8] | FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan, CHEN Yue. A Shared Energy Storage Optimal Operation Method Considering the Risk of Probabilistic Voltage Unbalance Factor Limit Violation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 827-839. |
[9] | WANG Chao, YANG Bo, ZHANG Yuan, GUO Chunyu, YE Liyu. Numerical Simulation and Analysis of Cylindrical Ice Impacting Problem [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 368-378. |
[10] | ZHANG Yu, LIU Haiting, WENG Lin, SHEN Yao. Extraction of Fracture Toughness Parameters by Ring-Notched Small Punch Specimen Using Cohesive Model [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 850-857. |
[11] | CHEN Le,WANG Ying,LI Haihua. A New Electronic Skin with High Sesitivity Based on Sandwich Structure [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 499-506. |
[12] | YANG Yudan,ZHU Bingjie,GUO Zheng,YANG Xixiang. The Sensitivity Analysis of Energy System Parameters of Solar Powered Unmanned Aerial Vehicle [J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1045-1052. |
[13] | LIU Gehui (刘葛辉), LONG Xiangyu (龙翔宇), TONG Shuo (仝硕), ZHANG Rui (张瑞), CHEN Shaokuan* (陈绍宽) . Optimum Consecutive Preventive Maintenance Scheduling Model Considering Reliability [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 490-495. |
[14] | WANG Jian, ZHAO Hongyu, ZHONG Jihong, WANG Mengyu, CAI Zhijun. Robust Controller Design for Near Space Vehicle [J]. Air & Space Defense, 2019, 2(3): 53-58. |
[15] | QIAN Huanan,TAO Jing,YU Suiran. Error Analysis and Accuracy Synthesis for Linkage Mechanism of High-Precision Press [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 269-275. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||