[1] |
国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展和改革委员会能源研究所, 2015.
|
|
Energy Research Institute of National Development and Reform Commission. China 2050 high percentage renewable energy development scenario and pathway study[R]. Beijing: Energy Research Institute of the National Development and Reform Commission, 2015.
|
[2] |
PANDŽIĆ H, DVORKIN Y, WANG Y S, et al. Effect of time resolution on unit commitment decisions in systems with high wind penetration[C]// 2014 IEEE PES General Meeting | Conference & Exposition. National Harbor, MD, USA: IEEE, 2014: 1-5.
|
[3] |
艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195.
|
|
AI Xiaomeng, HAN Xingning, WEN Jinyu, et al. Robust unit commitment considering wind power ramp events[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 188-195.
|
[4] |
MILLIGAN M, KIRBY B, et al. Combining balancing areas’ variability: Impacts on wind integration in the western interconnection. (2010-05-23)[2022-06-26]. https://www.osti.gov/biblio/986254.
|
[5] |
GUY J D. Security constrained unit commitment[J]. IEEE Transactions on Power Apparatus & Systems, 1971, 90(3): 1385-1390.
|
[6] |
CONTAXIS G C, KABOURIS J. Short term scheduling in a wind/diesel autonomous energy system[J]. IEEE Transactions on Power Systems, 1991, 6(3): 1161-1167.
doi: 10.1109/59.119261
URL
|
[7] |
陈之栩, 谢开, 张晶, 等. 电网安全节能发电日前调度优化模型及算法[J]. 电力系统自动化, 2009, 33(1): 10-13.
|
|
CHEN Zhixu, XIE Kai, ZHANG Jing, et al. Optimal model and algorithm for day-ahead generation scheduling of transmission grid security constrained convention dispatch[J]. Automation of Electric Power Systems, 2009, 33(1): 10-13.
|
[8] |
GANGAMMANAVAR H, SEN S, ZAVALA V M. Stochastic optimization of sub-hourly economic dispatch with wind energy[J]. IEEE Transactions on Power Systems, 2016, 31(2): 949-959.
doi: 10.1109/TPWRS.2015.2410301
URL
|
[9] |
CHE L, LIU X, ZHU X, et al. Intra-interval security assessment in power systems with high wind penetration[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1890-1903.
doi: 10.1109/TSTE.5165391
URL
|
[10] |
CHE L, LIU X, ZHU X, et al. Intra-interval security based dispatch for power systems with high wind penetration[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1243-1255.
doi: 10.1109/TPWRS.2018.2870667
URL
|
[11] |
SIOSHANSI R, O’NEILL R, OREN S S. Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets[J]. IEEE Transactions on Power Systems, 2008, 23(2): 344-352.
doi: 10.1109/TPWRS.2008.919246
URL
|
[12] |
MORALES-ESPAÑA G, RAMÍREZ-ELIZONDO L, HOBBS B F. Hidden power system inflexibilities imposed by traditional unit commitment formulations[J]. Applied Energy, 2017, 191: 223-238.
doi: 10.1016/j.apenergy.2017.01.089
URL
|
[13] |
BAKIRTZIS E A, BISKAS P N, LABRIDIS D P, et al. Multiple time resolution unit commitment for short-term operations scheduling under high renewable penetration[J]. IEEE Transactions on Power Systems, 2014, 29(1): 149-159.
doi: 10.1109/TPWRS.2013.2278215
URL
|
[14] |
BAKIRTZIS E A, SIMOGLOU C K, BISKAS P N, et al. Comparison of advanced power system operations models for large-scale renewable integration[J]. Electric Power Systems Research, 2015, 128: 90-99.
doi: 10.1016/j.epsr.2015.06.025
URL
|
[15] |
BAKIRTZIS E A, BISKAS P N. Multiple time resolution stochastic scheduling for systems with high renewable penetration[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1030-1040.
|
[16] |
ELA E, O’MALLEY M. Studying the variability and uncertainty impacts of variable generation at multiple timescales[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1324-1333.
doi: 10.1109/TPWRS.2012.2185816
URL
|
[17] |
WAN Y H. Analysis of wind power ramping behavior in ERCOT[R]. USA: Office of Scientific and Technical Information, 2011.
|
[18] |
梁双, 胡学浩, 张东霞, 等. 光伏发电置信容量的研究现状与发展趋势[J]. 电力系统自动化, 2011, 35(19): 101-107.
|
|
LIANG Shuang, HU Xuehao, ZHANG Dongxia, et al. Current status and development trend on capacity credit of photovoltaic generation[J]. Automation of Electric Power Systems, 2011, 35(19): 101-107.
|
[19] |
邬超, 朱桂萍, 钱敏慧. 基于信息熵的历史数据选取对超短期风电功率预测精度影响研究[J]. 电网技术, 2021, 45(5): 1767-1772.
|
|
WU Chao, ZHU Guiping, QIAN Minhui. Impact of historical data selection on accuracy of ultra-short-term wind power prediction based on prediction information entropy[J]. Power System Technology, 2021, 45(5): 1767-1772.
|
[20] |
PINEDA S, FERNÁNDEZ-BLANCO R, MORALES J M. Time-adaptive unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3869-3878.
doi: 10.1109/TPWRS.59
URL
|
[21] |
金国彬, 潘狄, 陈庆, 等. 考虑自适应实时调度的多电压等级直流配电网能量优化方法[J]. 电网技术, 2021, 45(10): 3906-3917.
|
|
JIN Guobin, PAN Di, CHEN Qing, et al. Energy optimization method of multi-voltage-level DC distribution network considering adaptive real-time scheduling[J]. Power System Technology, 2021, 45(10): 3906-3917.
|
[22] |
AGENCY I E. Empowering variable renewables-options for flexible electricity systems[M]. Paris: OECD Publishing, 2009: 13-14.
|
[23] |
楚成博. 含可调控负荷系统的调度灵活性研究[D]. 济南: 山东大学, 2013.
|
|
CHU Chengbo. Studies on flexibility of power system dispatch with controllable loads[D]. Jinan: Shandong University, 2013.
|
[24] |
NI F, NIJHUIS M, NGUYEN P H, et al. Variance-based global sensitivity analysis for power systems[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1670-1682.
doi: 10.1109/TPWRS.2017.2719046
URL
|
[25] |
孙鑫, 王博, 陈金富, 等. 基于稀疏多项式混沌展开的可用输电能力不确定性量化分析[J]. 中国电机工程学报, 2019, 39(10): 2904-2914.
|
|
SUN Xin, WANG Bo, CHEN Jinfu, et al. Sparse polynomial chaos expansion based uncertainty quantification for available transfer capability[J]. Proceedings of the CSEE, 2019, 39(10): 2904-2914.
|
[26] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948.
|
[27] |
王皓, 艾芊, 甘霖, 等. 基于多场景随机规划和MPC的冷热电联合系统协同优化[J]. 电力系统自动化, 2018, 42(13): 51-58.
|
|
WANG Hao, AI Qian, GAN Lin, et al. Collaborative optimization of combined cooling heating and power system based on multi-scenario stochastic programming and model predictive control[J]. Automation of Electric Power Systems, 2018, 42(13): 51-58.
|