J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 20-27.doi: 10.1007/s12204-023-2565-3
• Intelligent Transportation Systems • Previous Articles Next Articles
FU Jiawei∗ (傅家威), ZHAO Xu (赵 旭)
Received:
2022-02-28
Online:
2023-01-28
Published:
2023-02-10
CLC Number:
FU Jiawei∗ (傅家威), ZHAO Xu (赵 旭). Action-aware Encoder-Decoder Network for Pedestrian Trajectory Prediction[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27.
[1] MALLA S, DARIUSH B, CHOI C. TITAN: future forecast using action priors [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 11183-11193. [2] ZHANG T L, TU H Z, QIU W. Developing highprecision maps for automated driving in China: Legal obstacles and the way to overcome them [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 658-669. [3] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset [J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [4] SONG X B, WANG P, ZHOU D F, et al. Apollo-Car3D: A large 3D car instance understanding benchmark for autonomous driving [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5447-5457. [5] HU Y K, WANG C X, YANG M. Decision-making method of intelligent vehicles: A survey [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1035-1048 (in Chinese). [6] SHI Q, ZHANG J L, YANG M. Curvature adaptive control based path following for automatic driving vehicles in private area [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 690-698. [7] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6261-6270. [8] RASOULI A, KOTSERUBA I, TSOTSOS J K. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior [C]//2017 IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 206-213. [9] PELLEGRINI S, ESS A, SCHINDLER K, et al. You’ll never walk alone: Modeling social behavior for multitarget tracking [C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 261-268. [10] LEAL-TAIX′E L, FENZI M, KUZNETSOVA A, et al. Learning an image-based motion context for multiple people tracking [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014: 3542-3549. [11] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 961-971. [12] LIANG J W, JIANG L, NIEBLES J C, et al. Peeking into the future: Predicting future person activities and locations in videos [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5718-5727. [13] SIVARAMAN S, TRIVEDI M M. Dynamic probabilistic drivability maps for lane change and merge driver assistance [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2063-2073. [14] LI N, YAO Y, KOLMANOVSKY I, et al. Gametheoretic modeling of multi-vehicle interactions at uncontrolled intersections [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1428-1442. [15] YAO Y, ATKINS E, JOHNSON-ROBERSON M, et al. BiTraP: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1463-1470. [16] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723. [17] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: Endpoint conditioned trajectory prediction [M]//Computer Vision – ECCV 2020. Cham: Springer, 2020: 759-776. [18] REHDER E, KLOEDEN H. Goal-directed pedestrian prediction [C]//2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 139-147. [19] RHINEHART N, MCALLISTER R, KITANI K, et al. PRECOG: Prediction conditioned on goals in visual multi-agent settings [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2821-2830. [20] HOCHREITER S, SCHMIDHUBER J. Long shortterm memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [21] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 2255-2264. [22] KOSARAJU V, SADEGHIAN A, MART′IN-MART′IN R, et al. Social-BiGAT: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks [C]//Advances in Neural Information Processing Systems. Vancouver, BC: Neural Information Processing Systems Foundation, 2019: 137-146. [23] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]//Advancesin Neural Information Processing Systems. Montreal: Neural Information Processing Systems Foundation, 2014: 2672-2680. [24] SHAFIEE N, PADIR T, ELHAMIFAR E. Introvert: Human trajectory prediction via conditional 3D attention [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 16810-16820. [25] DU L, DING X, LIU T, et al. Modeling event background for if-then commonsense reasoning using context-aware variational autoencoder [C]//2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 2682-2691. [26] ZHAO T C, ZHAO R, ESKENAZI M. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders [C]//55th Annual Meeting of the Association for Computational Linguistics. Vancouver: Association for Computational Linguistics, 2017: 654-664. [27] SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models [C]//Advances in Neural Information Processing Systems. Montr′eal: Neural Information Processing Systems Foundation, 2015: 3483-3491. [28] REYNOLDS D. Gaussian mixture models [M]//Encyclopedia of biometrics. Boston, MA: Springer, 2009: 659-663. [29] QUAN R J, ZHU L C, WU Y, et al. Holistic LSTM for pedestrian trajectory prediction [J]. IEEE Transactions on Image Processing, 2021, 30: 3229-3239. [30] NEUMANN L, VEDALDI A. Pedestrian and egovehicle trajectory prediction from monocular camera [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 10199-10207. [31] RHINEHART N, KITANI K M, VERNAZA P. R2P2: A reparameterized pushforward policy for diverse, precise generative path forecasting [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 794-811. [32] LI J C, MA H B, TOMIZUKA M. Conditional generative neural system for probabilistic trajectory prediction [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2019: 6150-6156. [33] CHOI C, MALLA S, PATIL A, et al. DROGON: A causal reasoning framework for future trajectory forecast [EB/OL]. (2020-11-06) [2022-04-19]. https://arxiv.org/abs/1908.00024. [34] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on gridbased plans [EB/OL]. (2021-04-29) [2022-04-19]. https://arxiv.org/abs/2001.00735. [35] FANG Z J, L′OPEZ A M. Is the pedestrian going to cross? Answering by 2D pose estimation [C]//2018 IEEE Intelligent Vehicles Symposium. Changshu: IEEE, 2018: 1271-1276. [36] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 1302-1310. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[3] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[4] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[6] | YAN Congqiang1,2 (鄢丛强), GUO Zhengyun3,4 (郭正玉), CAI Yunze1,2∗∗ (蔡云泽). Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | LONARE Savita1,2* , BHRAMARAMBA Ravi2. Federated Approach for Privacy-Preserving Traffic Prediction Using Graph Convolutional Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[8] | LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[9] | SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[10] | SHEN Ao1,2‡ (沈傲), HU Jisu 2,3‡ (胡冀苏), JIN Pengfei4 (金鹏飞), ZHOU Zhiyong2 (周志勇), QIAN Xusheng 2,3 (钱旭升), ZHENG Yi2 (郑毅), BAO Jie 4 (包婕), WANG Ximing4∗ (王希明), DAI Yakang1,2∗ (戴亚康). Ensemble Attention Guided Multi-SEANet Trained with Curriculum Learning for Noninvasive Prediction of Gleason Grade Groups from MRI [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[11] | XUE Yongboa (薛永波),LIU Zhaob (刘钊), LI Zeyanga (李泽阳),ZHU Pinga* (朱平). CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[12] | QIN Chao1 (秦 超), WANG Yafei1 (王亚飞), ZHANG Yuchao2 (张宇超), YIN Chengliang1∗ (殷承良). Birds-Eye-View Semantic Segmentation and Voxels Semantic Segmentation Based on Frustum Voxels Modeling and Monocular Camera [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[13] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform [J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||