[1] |
PEDRYCZ W, CHEN S M. Time series analysis, modelingand applications [M]. Berlin: Springer-Verlag,2013.
|
[2] |
WANG L, ZOU H F, SU J, et al. An ARIMA-ANNhybrid model for time series forecasting [J]. SystemsResearch and Behavioral Science, 2013, 30: 244-259.
|
[3] |
CORTEZ P, RIO M, ROCHA M, et al. Multi-scaleInternet traffic forecasting using neural networks andtime series methods [J]. Expert Systems, 2012, 29(2):143-155.
|
[4] |
KUMAR D A, MURUGAN S. Performance analysisof Indian stock market index using neural networktime series model [C]//Proceedings of the 2013 InternationalConference on Pattern Recognition, Informaticsand Mobile Engineering (PRIME). [s. l.]: IEEE,2013: 72-78.
|
[5] |
O’CONNOR N, MADDEN M G. A neural network approachto predicting stock exchange movements usingexternal factors [J]. Knowledge-Based Systems, 2006,19(5): 371-378.
|
[6] |
SCHUMAKER R P, ZHANG Y L, HUANG C N, etal. Evaluating sentiment in financial news articles [J].Decision Support Systems, 2012, 53(3): 458-464.
|
[7] |
LIANG X, CHEN R C, HE Y, et al. Associatingstock prices with web financial information time seriesbased on support vector regression [J]. Neurocomputing,2013, 115: 142-149.
|
[8] |
HAGENAU M, LIEBMANN M, NEUMANN D. Automatednews reading: Stock price prediction basedon financial news using context-capturing features [J].Decision Support Systems, 2013, 55: 685-697.
|
[9] |
RUIZ E J, HRISTIDIS V, CASTILLO C, et al. Correlatingfinancial time series with micro-blogging activity[C]// Proceedings of the fifth ACM International Conferenceon Web Search and Data Mining. New York,USA: ACM, 2012: 513-522.
|
[10] |
BOLLEN J, MAO H, ZENG X J. Twitter mood predictsthe stock market [J]. Journal of ComputationalScience, 2011, 2(1): 1-8.
|
[11] |
LI Q, WANG J, WANG F, et al. The role of socialsentiment in stock markets: A view from joint effects ofmultiple information sources [J]. Multimedia Tools andApplications, 2016. DOI: 10. 1007/s11042-016-3643-4(published online).
|
[12] |
ROMANOWSKI A, SKUZA M. Towards predictingstock price moves with aid of sentiment analysis ofTwitter social network data and big data processingenvironment [C]// Advances in Business ICT: NewIdeas from Ongoing Research, Studies in ComputationalIntelligence. [s.l.]: Springer International Publishing,2017: 105-123.
|