J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 625-636.doi: 10.1007/s12204-025-2819-3

• Medicine-Engineering Interdisciplinary •     Next Articles

Comparative Study on Tissue Differentiation of Bone Marrow Mesenchymal Stem Cells in Irregular Versus Regular Bone Tissue Engineering Scaffolds

骨髓间充质干细胞在不规则与规则骨组织工程支架中的组织分化比较研究

海几哲1,徐庆宇1,单春龙2,李海杰1,荆磊1   

  1. 1. School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; 2. Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi 830000, China
  2. 1.新疆大学 智能制造现代产业学院,乌鲁木齐 830017;2. 新疆医科大学第六附属医院,乌鲁木齐 830000
  • Received:2024-07-02 Accepted:2024-10-18 Online:2025-07-31 Published:2025-07-31

Abstract: In bone tissue engineering microstructure design, adjusting the structural design of biomimetic bone scaffolds can provide distinct differentiation stimuli to cells on the scaffold surface. This study explored the biomechanical impacts of different biomimetic microstructures on advanced bone tissue engineering scaffolds. Two irregular bone scaffolds (homogeneous/radial gradient) based on the Voronoi tesselation algorithm and eight regular lattice scaffolds involving pillar body centered cubic, vintiles, diamond, and cube (homogeneous/radial gradient) with constant 80% porosity were constructed. Mechanical stimulation differentiation algorithms, finite element analysis, and computational fluid dynamics were used to investigate the effects of different pore structures on the octahedral shear strain and fluid flow shear stress within the scaffolds, thereby elucidating the differentiation capabilities of the five structural bone/cartilage cell types. The findings demonstrated that irregular structures and radial-gradient designs promoted osteogenic differentiation, whereas regular structures and homogeneous designs facilitated chondrogenic differentiation. The highest percentages of osteoblast and chondrocyte differentiation were observed in radial-gradient irregular scaffolds. This research provides insights into the microstructure design of bone tissue engineering implants.

Key words: Voronoi-tessellation, mechanical stimulation differentiation algorithms, bone cell, cartilage cell

摘要: 在骨组织工程微结构设计中,调整仿生骨支架的结构设计可为支架表面的细胞提供不同的分化刺激。本研究探讨了不同生物仿生微结构对推进骨组织工程支架的生物力学影响。构建了具有恒定 80% 孔隙率的,两种基于泰森多边形算法的不规则骨支架(均质/径向梯度)和八种包括柱状体心立方结构、Vintiles、菱形与立方体的规则晶格支架(均质/径向梯度)。利用机械刺激分化算法、有限元分析和计算流体动力学研究了不同孔隙结构对支架内八面体剪切应变和流体流动剪切应力的影响,阐明了五种结构骨/软骨细胞类型的分化能力。研究结果表明:不规则结构和径向梯度设计可促进成骨细胞分化,而规则结构和均质设计可促进软骨分化;在径向梯度不规则支架中观察到的成骨细胞和软骨细胞分化比例最高。这项研究有助于深入了解骨组织工程植入物的微结构设计。

关键词: 泰森多边形, 机械刺激组织分化算法, 骨细胞, 软骨细胞

CLC Number: