[1] National Fire Protection Association. National electricalcode: NFPA 70 [S]. Quincy, MA, USA: NFPA,2011.
[2] Underwriters Laboratories Inc. Outline of investigationfor photovoltaic (PV) DC arc-fault circuit protection:UL 1699B [S]. Northbrook, IL, USA: UL, 2013.
[3] NOVAK B. Implementing arc detection in solarapplications: achieving compliance with the newUL 1699B standard [EB/OL]. (2012-07-10) [2018-10-10]. http://www.ti.com/lit/wp/spry209/spry209.pdf.
[4] XIONG Q, JI S C, ZHU L Y, et al. A novel DC arcfault detection method based on electromagnetic radiationsignal [J]. IEEE Transactions on Plasma Science,2017, 45(3): 472-478.
[5] XIA K, HE Z H, YUAN Y, et al. An arc fault detectionsystem for the household photovoltaic inverteraccording to the DC bus currents [C]//18th InternationalConference on Electrical Machines and Systems.Pattaya, Thailand: IEEE, 2015: 1687-1690.
[6] CHAE S, PARK J, OH S. Series DC arc fault detectionalgorithm for DC microgrids using relative magnitudecomparison [J]. IEEE Journal of Emerging andSelected Topics in Power Electronics, 2016, 4(4): 1270-1278.
[7] CHEN S L, LI X W, XIONG J Y. Series arc faultidentification for photovoltaic system based on timedomainand time-frequency-domain analysis [J]. IEEEJournal of Photovoltaics, 2017, 7(4): 1105-1114.
[8] WANG Z, BALOG R S. Arc fault and flash detectionin photovoltaic systems using wavelet transformand support vector machines [C]//43rd IEEE PhotovoltaicSpecialists Conference. Portland, OR, USA:IEEE, 2016: 3275-3280.
[9] ZHU H Z, WANG Z, BALOG R S. Real time arc faultdetection in PV systems using wavelet decomposition[C]//43rd IEEE Photovoltaic Specialists Conference.Portland, OR, USA: IEEE, 2016: 1761-1766.
[10] LU S B, PHUNG B T, ZHANG D M. A comprehensivereview on DC arc faults and their diagnosis methodsin photovoltaic systems [J]. Renewable and SustainableEnergy Reviews, 2018, 89: 88-98.
[11] GUO Y M, WANG L, WU Z Q, et al. Wavelet packetanalysis applied in detection of low-voltage DC arcfault [C]// 4th IEEE Conference on Industrial Electronicsand Applications. Xi’an, China: IEEE, 2009:4013-4016.
[12] MENG Z, WANG L, SUN Q G. The characteristics ofDC arc faults current [C]//15th European Conferenceon Power Electronics and Applications. Lille, France:IEEE, 2013: 1-9.
[13] YAO X, HERRERA L, JI S C, et al. Characteristicstudy and time-domain discrete-wavelet-transformbased hybrid detection of series DC arc faults [J]. IEEETransactions on Power Electronics, 2014, 29(6): 3103-3115.
[14] MOMOH J A, BUTTON R. Design and analysis ofaerospace DC arcing faults using fast Fourier transformationand artificial neural network [C]//IEEEPower Engineering Society General Meeting. Toronto,Canada: IEEE, 2003: 788-793.
[15] ROGERS S, GIROLAMI M. A first course in machinelearning [M]. Boca Raton, FL, USA: Chapman andHall/CRC, 2011.
|