Journal of shanghai Jiaotong University (Science) ›› 2017, Vol. 22 ›› Issue (3): 291-302.doi: 10.1007/s12204-017-1835-3
Previous Articles Next Articles
XU Zewen1,2 (许泽文), LI Jianqiang1,2,3,4* (李建强), LIU Bo1 (刘博),BI Jing1 (毕敬), LI Rong1 (李蓉), MAO Rui3,4 (毛睿)
Online:
2017-06-02
Published:
2017-06-04
Contact:
LI Jianqiang(李建强)
E-mail:lijianqiang@bjut.edu.cn
CLC Number:
XU Zewen1,2 (许泽文), LI Jianqiang1,2,3,4* (李建强), LIU Bo1 (刘博),BI Jing1 (毕敬), LI Rong1 (李蓉), MAO Rui3,4 (毛睿). Semi-Supervised Learning in Large Scale Text Categorization[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(3): 291-302.
[1] | LI J Q, ZHAO Y, LIU B. Exploiting semantic resourcesfor large scale text categorization [J]. Journal of IntelligentInformation Systems, 2012, 39(3): 763-788. |
[2] | MIYATO T, DAI A M, GOODFELLOW I. Virtualadversarial training for semi-supervised text classification[EB/OL]. (2016-07-22). https://arxiv.org/abs/1605.07725v1. |
[3] | YIN C Y, XIANG J, ZHANG H, et al. A new SVMmethod for short text classification based on semisupervisedlearning [C]//2015 4th International Conferenceon Advanced Information Technology and SensorApplication. Dubai, UAE: IEEE, 2015: 100-103. |
[4] | JOHNSON R, ZHANG T. Semi-supervised convolutionalneural networks for text categorization via regionembedding [J]. Advances in Neural InformationProcessing Systems, 2015, 28: 919-927. |
[5] | JOHNSON R, ZHANG T. Supervised and semisupervisedtext categorization using LSTM for regionembeddings [C]//Proceedings of the 33rd InternationalConference on Machine Learning. New York, USA:JMLR W&CP, 2016: 1-9. |
[6] | SEBASTIANI F. Machine learning in automated textcategorization [J]. ACM Computing Surveys, 2002,34(1): 1-47. |
[7] | JOACHIMS T. Transductive inference for text classificationusing support vector machines [C]//Proceedingsof the 16th International Conference on MachineLearning. Bled, Slovenia: [s.n.], 1999: 200-209. |
[8] | SIOLAS G, D’ALCH′ E-BUC F. Support vector machinesbased on a semantic kernel for text categorization[C]//Proceedings of the IEEE-INNS-ENNS InternationalJoint Conference on Neuralnetworks. Washington,USA: IEEE, 2000: 205-209. |
[9] | BASILI R, CAMMISA M, MOSCHITTI A. Effectiveuse of Wordnet semantics via kernel-basedlearning [C]//Proceedings of the 9th Conference onComputational Natural Language Learning. Ann Arbor,USA: Association for Computational Linguistics,2005: 1-8. |
[10] | GABRILOVICH E, MARKOVITCH S. Feature generationfor text categorization using world knowledge[C]//International Joint Conference on Artificial Intelligence.[s.l.]: Morgan Kaufmann Publishers Inc,2005: 1048-1053. |
[11] | WANG P, DOMENICONI C. Building semantic kernelsfor text classification using wikipedia [C]//ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining. Las Vegas, USA: ACM, 2008:713-721. |
[12] | CHAPELLE O, SCH¨OLKOPF B, ZIEN A. Semisupervisedlearning [M]. London, England: MIT Press,2006. |
[13] | SINDHWANI V, KEERTHI S S. Large scale semisupervisedlinear SVMs [C]//International ACM SIGIRConference on Research and Development in InformationRetrieval. Washington, USA: ACM, 2006:477-484. |
[14] | SINDHWANI V, KEERTHI S S. Newton methodsfor fast solution of semi-supervised linear SVMs[EB/OL]. (2016-07-22). http: //citeseerx.ist.psu.edu/viewdoc/download. |
[15] | LI C H, YANG J C, PARK S C. Text categorization algorithmsusing semantic approaches, corpus-based thesaurusand WordNet [J]. Expert Systems with Applications,2012, 39: 765-772. |
[16] | FOX-ROBERTS P, ROSTEN E. Unbiased generativesemi-supervised learning [J]. Journal of MachineLearning Research, 2014, 15: 367-443. |
[17] | SHANG F H, JIAO L C, LIU Y Y, et al. Semisupervisedlearning with nuclear norm regularization[J]. Pattern Recognization, 2013, 46(8): 2323-2336. |
[18] | WANG J, JEBARA T, CHANG S F. Semi-supervisedlearning using greedy max-cut [J]. Journal of MachineLearning Research, 2013, 14: 729-758. |
[19] | CHENG S, SHI Y H, QIN Q D. Particle swarmoptimization based semi-supervised learning on chinesetext categorization [C]//Proceedings of the 2012IEEE Congress on Evolutionary Computation. Brisbane,Australia: IEEE, 2012: 1-8. |
[20] | LENG Y, XU X Y, QI G H. Combining active learningand semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44(1): 121-131. |
[21] | LI J Q, LIU C C, LIU B, et al. Diversity-aware retrievalof medical records [J]. Compuer in Industries, 2015,69(1): 81-91. |
[22] | YANG J M, LIU Y N, ZHU X D, et al. A new featureselection based on comprehensive measurement bothin inter-category and intra-category for text categorization[J]. Information Processing and Management,2012, 48(4): 741-754. |
[23] | BREVE F, ZHAO L, QUILES M, et al. Particlecompetition and cooperation in networks for semisupervisedlearning [J]. IEEE Transactions on Knowledgeand Data Engineering, 2011, 24(9): 1686-1698. |
[24] | LI J Q, WANG F. Semi-supervised learning via meanfield methods [J]. Neurocomputing, 2016, 177: 385-393. |
[1] | A. Sahaya Anselin Nisha1* , NARMADHA R.1 , AMIRTHALAKSHMI T. M.2,BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[2] | YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2(周璐), HUANG Xiaolin1,3* (黄晓霖). Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-. |
[3] | JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
[4] | TU Enmei,YANG Jie. A Review of Semi-Supervised Learning Theories and Recent Advances [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1280-1291. |
[5] | TANG Qi-feng (汤奇峰), LI De-wei* (李德伟), XI Yu-geng (席裕庚). Soft-Sensing Method with Online Correction Based on Semi-Supervised Learning [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 171-176. |
[6] | WANG Ping,WANG Di,FENG Wei. Online Semi-Supervised Extreme Learning Machine Based on Manifold Regularization [J]. Journal of Shanghai Jiaotong University, 2015, 49(08): 1153-1158. |
[7] | LI Yanfeng,WANG Xinqing,ZHANG Meijun,ZHU Huijie. An Approach to Fault Diagnosis of Rolling Bearing Using SVD and Multiple DBN Classifiers [J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 681-686. |
[8] | YU Lu1,2,QIAO Ruiping2,HU Yuping2,ZHAO Jing1,2. A Video Shot Segmentation Method Based on a Two-Stage Support Vector Machine Classifier [J]. Journal of Shanghai Jiaotong University, 2014, 48(05): 668-673. |
[9] | Jia S.-J.; Kong X.-W.; Man H.. Automatic product image classification with multiple support vector machine classifiers [J]. J Shanghai Jiaotong Univ Sci, 2011, 16(4): 391-394. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 705
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||