J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 441-.doi: 10.1007/s12204-022-2519-1
• Medicine-Engineering Interdisciplinary Research • Previous Articles
YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2 (周璐), HUANG Xiaolin1,3* (黄晓霖)
Received:
2021-04-16
Accepted:
2021-08-02
Online:
2023-07-28
Published:
2023-07-31
CLC Number:
YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2(周璐), HUANG Xiaolin1,3* (黄晓霖). Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-.
[1] MATHUR P, SATHISHKUMAR K, CHATURVEDIM, et al. Cancer statistics, 2020: Report from nationalcancer registry programme, India [J]. JCO Global Oncology, 2020, 6: 1063-1075. [2] LEUFKENS A M, VAN OIJEN M G H, VLEGGAARF P, et al. Factors influencing the miss rate of polypsin a back-to-back colonoscopy study [J]. Endoscopy,2012, 44(5): 470-475. [3] AHMAD O F, SOARES A S, MAZOMENOS E, et al.Artificial intelligence and computer-aided diagnosis incolonoscopy: Current evidence and future directions[J]. The Lancet Gastroenterology & Hepatology, 2019,4(1): 71-80. [4] URBAN G, TRIPATHI P, ALKAYALI T, et al. Deeplearning localizes and identifies polyps in real time with96% accuracy in screening colonoscopy [J]. Gastroenterology, 2018, 155(4): 1069-1078.e8. [5] BERNAL J, S′ANCHEZ F J, FERN′ANDEZESPARRACH G, et al. WM-DOVA maps for accuratepolyp highlighting in colonoscopy: Validation vs.saliency maps from physicians [J]. ComputerizedMedical Imaging and Graphics, 2015, 43: 99-111. [6] FERN′ANDEZ-ESPARRACH G, BERNAL J,L′OPEZ-CER ′ON M, et al. Exploring the clinicalpotential of an automatic colonic polyp detectionmethod based on the creation of energy maps [J].Endoscopy, 2016, 48(9): 837-842. [7] BERNAL J, S′ANCHEZ J, VILARI ?NO F. Towardsautomatic polyp detection with a polyp appearancemodel [J]. Pattern Recognition, 2012, 45(9): 3166-3182. [8] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for earlydiagnosis of colorectal cancer [J]. International Journal of Computer Assisted Radiology and Surgery, 2014,9(2): 283-293. [9] JHA D, SMEDSRUD P H, RIEGLER M A,et al. Kvasir-SEG: A segmented polyp dataset[M]//MultiMedia modeling. Cham: Springer, 2019:451-462. [10] SOHN K, BERTHELOT D, LI C L, et al. FixMatch:Simplifying semi-supervised learning with consistencyand confidence [C]//34th Conference on Neural Information Processing Systems. Online: Committee ofNeurIPS, 2020: 1-13. [11] VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022, 145: 90-106. [12] BERTHELOT D, CARLINI N, GOODFELLOW I, etal. MixMatch: A holistic approach to semi-supervisedlearning [C]//33rd Conference on Neural Information Processing Systems. Vancouver: Committee ofNeurIPS, 2019: 1-11. [13] MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual adversarial training: A regularization methodfor supervised and semi-supervised learning [J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993. [14] JEONG J, VERMA V, HYUN M, et al. Interpolationbased semi-supervised learning for object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021:11597-11606. [15] SOHN K, ZHANG Z Z, LI C L, et al. Asimple semi-supervised learning framework for object detection [DB/OL]. (2020-12-03). https://arxiv.org/abs/2005.04757. [16] CHEN C, DONG S Y, TIAN Y, et al. Temporal selfensembling teacher for semi-supervised object detection [J]. IEEE Transactions on Multimedia, 2022, 24:3679-3692. [17] ZHAO N, CHUA T S, LEE G H. SESS: selfensembling semi-supervised 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020:11076-11084. [18] XIE Y T, ZHANG J P, XIA Y. Semi-supervised adversarial model for benign-malignant lung nodule classifi-cation on chest CT [J]. Medical Image Analysis, 2019,57: 237-248. [19] YE D H, POHL K M, DAVATZIKOS C. Semisupervised pattern classification: Application to structural MRI of Alzheimer’s disease [C]//2011 International Workshop on Pattern Recognition in NeuroImaging. Seoul: IEEE, 2011: 1-4. [20] GAO Y, LU W N, SI X B, et al. Deep model-basedsemi-supervised learning way for outlier detection inwireless capsule endoscopy images [J]. IEEE Access,2020, 8: 81621-81632. [21] VAN ENGELEN J E, HOOS H H. A survey onsemi-supervised learning [J]. Machine Learning, 2020,109(2): 373-440. [22] SINDHWANI V, KEERTHI S S. Large scale semisupervised linear SVMs [C]//29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle: ACM, 2006:477-484. [23] TARVAINEN A, VALPOLA H. Mean teachers arebetter role models: Weight-averaged consistency targets improve semi-supervised deep learning results[C]//31st Conference on Neural Information Processing Systems. Long Beach: Committee of NIPS, 2017:1-10. [24] ZHAI X H, OLIVER A, KOLESNIKOV A, et al. S4L:Self-supervised semi-supervised learning [C]//2019IEEE/CVF International Conference on ComputerVision. Seoul: IEEE, 2019: 1476-1485. [25] LAINE S, AILA T. Temporal ensembling for semisupervised learning [C]//5th International Conferenceon Learning Representations. Toulon: Committee ofICLR, 2017: 1-13. [26] GOLHAR M, BOBROW T L, KHOSHKNAB M P,et al. Improving colonoscopy lesion classification usingsemi-supervised deep learning [J]. IEEE Access, 2021,9: 631-640. [27] GUO X Q, YUAN Y X. Semi-supervised WCE imageclassification with adaptive aggregated attention [J].Medical Image Analysis, 2020, 64: 101733. [28] ROSS T, ZIMMERER D, VEMURI A, et al. Exploiting the potential of unlabeled endoscopic video datawith self-supervised learning [J]. International Journal of Computer Assisted Radiology and Surgery, 2018,13(6): 925-933. [29] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DB/OL]. (2018-04-18).https://arxiv.org/abs/1804.02767. [30] DENG J, DONG W, SOCHER R, et al. ImageNet:A large-scale hierarchical image database [C]//2009IEEE Conference on Computer Vision and PatternRecognition. Miami: IEEE, 2009: 248-255. [31] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with regionproposal networks [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2017, 39(6): 1137-1149. [32] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detectionand semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus: IEEE, 2014: 580-587. |
[1] | LIU Ning (刘宁), YUAN Zhenming* (袁贞明). Spontaneous Language Analysis in Alzheimer’s Disease:Evaluation of Natural Language Processing Technique for Analyzing Lexical Performance [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[2] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[4] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[5] | YU Xiaokang (俞小康), YE Jia (叶佳), WU Chunxiang (吴春祥), MA Guohong∗ (马国红). Effect of Cu Addition on the Microstructure and Mechanical Properties of U-MIG Welds on Galvanized Steel Sheets [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[6] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[7] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[8] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[9] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[10] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[11] | WANG Bo* (王 博), WAN Lei (万 磊), LI Ye (李 晔). Saliency Motivated Pulse Coupled Neural Network for Underwater Laser Image Segmentation [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(3): 289-296. |
[12] | ZHANG Wen-fen (张雯雰). Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 38-43. |
[13] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 51-55. |
[14] | SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tangbin (夏唐斌). Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[15] | ZHUO Pengcheng (卓鹏程), ZHU Ying (朱颖), WU Wenxuan (邬雯喧), SHU Junqing (舒俊清), XIA Tangbin (夏唐斌). Real-Time Fault Diagnosis for Gas Turbine Blade Based on Output-Hidden Feedback Elman Neural Network [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||