[1] Chen S B, Wu J. Intelligentized methodology for arc welding dynamical processes: Visual information acquiring,knowledge modeling and intelligent control [C]//Lecture Notes in Electrical Engineering. Berlin:Springer-Verlag, 2008: 1-278.[2] Fan C J, Lv F L, Chen S B. Visual sensing and penetration control in aluminum alloy pulsed GTA welding[J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(1): 126-137.[3] Wang J, Lin T, Chen S B. Obtaining weld pool vision information during aluminium alloy TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(3): 219-227.[4] Hardt D E, Garlow D A,Weinert J B. A model of full penetration arc-welding for control system design[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107: 40-48.[5] Duley W W, Mao Y L. The effect of surface condition on acoustic emission during welding of aluminium with CO2 laser radiation [J]. Journal of Physics D:Applied Physics, 1994, 27: 1379-1383.[6] Chen W, Chin B A. Monitoring joint penetration using infrared sensing techniques [J]. Welding Journal,1990, 69(4): 181-185.[7] Cook G E. Robotic arc welding: Research in sensory feedback control [J]. IEEE Transactions on Industrial Electronics, 1983, 30(3): 252-268.[8] Thomsen J S. Feedback linearization based arc length control for gas metal arc welding [C]//Proceedings of the 2005 American Control Conference. Portland,USA: AACC, 2005: 3568-3573.[9] XuY L, Lv N, Zhong J Y, et al. Research on the realtime tracking information of three-dimension welding seam in robotic GTAW process based on composite sensor technology [J]. Journal of Intelligent & Robotic Systems, 2012, 68: 89-103.[10] Chen B, Wang J F, Chen S B. A study on application of multi-sensor information fusion in pulsed GTAW [J]. Industrial Robot: An International Journal,2010, 37(2): 168-176.[11] Luo H, Zeng H, Hu L J, et al. Application of artificial neural network in laser welding defect diagnosis[J]. Journal of Materials Processing Technology, 2005,170: 403-411.[12] Pal S, Pal S K, Samantaray A K. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals[J]. Journal of Materials Processing Technology, 2008,202: 464-474.[13] Naso D, Turchiano B, Pantaleo P. A fuzzylogic based optical sensor for online weld defectdetection[J]. IEEE Transactions on Industrial Informatics,2005, 1(1): 259-273.[14] Wand J F, Yu H D, Qian Y Z, et al. Feature extraction in welding penetration monitoring with arc sound signals [J]. Journal of Engineering Manufacture, 2011,225(9): 1683-1691.[15] Freund Y, Schapire R E. Experiments with a new Boosting algorithm [C]//Proceedings of the Thirteenth International Conference. [s.l.]: IEEE, 1996: 148-156.[16] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [s.l.]: IEEE, 2001:511-518.[17] Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection [C]// IEEE International Conference on Image Processing. Rochester,New York: IEEE, 2002: 1-4. |