Journal of shanghai Jiaotong University (Science) ›› 2014, Vol. 19 ›› Issue (1): 1-10.doi: 10.1007/s12204-014-1470-1
LI Jia-wang (李家旺), WU Chao (吴 超), GE Tong* (葛 彤)
Online:
2014-01-15
Published:
2014-01-15
Contact:
GE Tong(葛 彤)
E-mail:tongge@sjtu.edu.cn
CLC Number:
LI Jia-wang (李家旺), WU Chao (吴 超), GE Tong* (葛 彤). Central Pattern Generator Based Gait Control for Planar Quadruped Robots[J]. Journal of shanghai Jiaotong University (Science), 2014, 19(1): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/sjtu_en/EN/10.1007/s12204-014-1470-1
[1] Ijspeert A J. Central pattern generators for locomotion control in animals and robots: A review [J]. Neural Networks, 2008, 21(4): 642-653.[2] Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation [J]. Biological Cybernetics, 1985, 52(6): 367-376.[3] Liu C, Chen Q, Wang D. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, 2011, 41(3): 867-880.[4] Righetti L, Ijspeert A J. Pattern generators with sensory feedback for the control of quadruped locomotion [C]// Proceedings of the 2008 IEEE International Conference on Robotics and Automation. USA: IEEE, 2008: 819-824.[5] Santos C P, Matos V. Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach [J]. Robotics and Autonomous Systems,2011, 59(9): 620-634.[6] Fukuoka Y, Kimura H, Cohen A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts [J]. The International Journal of Robotics Research, 2003, 22(3-4): 187-202.[7] Liu C, Chen Y, Zhang J, et al. CPG driven locomotion control of quadruped robot [C]//Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. USA: IEEE, 2009: 2368-2373.[8] Inagaki S, Yuasa H, Suzuki T, et al. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control [J].Robotics and Autonomous Systems, 2006, 54(2): 118-126.[9] Zhao W, Hu Y, Zhang L, et al. Design and CPGbased control of biomimetic robotic fish [J]. IET Control Theory and Applications, 2009, 3(3): 281-293.[10] Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot [J]. IEEE Transactions on Robotics, 2008, 24(1): 75-87.[11] Wu X, Ma S. CPG-based control of serpentine locomotion of a snake-like robot [J]. Mechatronics, 2010,20(2): 326-334.[12] Kamimura A, Kurokawa H, Yoshida E, et al. Automatic locomotion design and experiments for a modular robotic system [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(3): 314-325.[13] Ishiguro A, Fujii A, Hotz P E. Neuromodulated control of bipedal locomotion using a polymorphic CPG circuit [J]. International Society for Adaptive Behavior,2003, 11(1): 7-18.[14] Taga G. A model of the neuron-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance [J]. Biological Cybernetics,1998, 78(1): 9-17.[15] Kimura H, Fukuoka Y, Cohen A H. Biologically inspired adaptive dynamic walking of a quadruped robot [C]//Proceedings of the 8th International Conference on the Simulation of Adaptive Behavior. USA: MIT,2004: 201-210.[16] Matsubara T, Morimoto J, Nakanishi J, et al. Learning CPG-based biped locomotion with a policy gradient method [J]. Robotics and Autonomous Systems,2006, 54(11): 911-920.[17] Asa K, Ishimura K, Wada M. Behavior transition between biped and quadruped walking by using bifurcation[J]. Robotics and Autonomous Systems, 2009,57(2): 155-160. |
[1] | LI Longyue, WANG Wenhao, PI Li, JIA Zhonghui, ZHAO Huizhen. Overview of Simulation and Deduction Methods for Air Defense and Anti-Missile Warfare [J]. Air & Space Defense, 2025, 8(1): 48-53. |
[2] | ZHANG Shengjia(张晟嘉), LIN Tiancheng(林天成), XU Yi(徐奕). Boosting Unsupervised Domain Adaptation with Soft Pseudo-Label and Curriculum Learning [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 703-716. |
[3] | HOU Liangsheng(侯良生),ZHANG Jundong*(张均东). Fault Diagnosis for Rolling Element Bearing in Dataset Bias Scenario [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 638-651. |
[4] | CHEN Changchuan, LIU Kai, LIU Renguang, FENG Xiaozong, QIN Yanjia, DAI Shaosheng, ZHANG Tianqi. Clustering Separation Method Based on Multi-Source Partial Discharge Signal Data Stream [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1014-1023. |
[5] | ZHANG Shaoguang, XIAO Maochao, ZHANG Yufei, CHEN Haixin. Study on Perturbation Introduction Method of Asymmetric Vortex Simulation of Slender Body at High Angle of Attack [J]. Air & Space Defense, 2022, 5(3): 10-16. |
[6] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[7] | HU Jinhao, WANG Minghao, XIA Tianyang, WANG Yuexing, DU Haijing, XU Chuangang. Methods for Infrared-Visible Light Image Fusion Based on HSV Color Space [J]. Air & Space Defense, 2021, 4(4): 87-94. |
[8] | FENG Xin-yang (冯新阳), XIAO Lei (肖雷), GONG Hai-qing (龚海庆), ZHANG Pu-ming (张溥明), LIANG Pei-ji* (梁培基). Influence of GABAergic Pathway on Retinal Adaptation-Related Response Changes [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 592-599. |
[9] | YANG Ke (杨柯), WANG Xu-yang* (王旭阳), GE Tong (葛彤), WU Chao (吴超). Simulation Platform for the Underwater Snake-Like Robot Swimming Based on Kane’s Dynamic Model and Central Pattern Generator [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 294-301. |
[10] | LEI Jingtao,YU Huangying. Dynamics Analysis of Bionic Flexible Body Driven by Pneumatic Artificial Muscle for Quadruped Robot [J]. Journal of Shanghai Jiaotong University, 2014, 48(12): 1688-1693. |
[11] | JIN Hui-liang,YUAN De-hu,YE Qian,XIE Wen-hua. yo-yo Motion Control by Oscillatory Neural Networks [J]. Journal of Shanghai Jiaotong University, 2008, 42(12): 1939-1942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||