J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 121-129.doi: 10.1007/s12204-023-2614-y
• • 上一篇
赵寅杰1,侯润萍1,曾琬琴2,秦玉磊1,沈天乐2,徐志勇2,傅小龙2,沈红斌1
收稿日期:
2022-08-08
接受日期:
2022-11-28
出版日期:
2025-01-28
发布日期:
2025-01-28
ZHAO Yinjie1 (赵寅杰), HOU Runpingg1 (侯润萍), ZENG Wanqin2 (曾琬琴), QIN Yulei1 (秦玉磊), SHEN Tianle2 (沈天乐), XU Zhiyong2 (徐志勇), FU Xiaolong2* (傅小龙), SHEN Hongbin1* (沈红斌)
Received:
2022-08-08
Accepted:
2022-11-28
Online:
2025-01-28
Published:
2025-01-28
摘要: 医学图像分割是许多下游诊断任务中的关键步骤。随着深度卷积神经网络极大地促进了计算机视觉的发展,半自动化的医学图像分割方法逐渐成熟,即通过应用深度卷积神经网络来检测感兴趣区域,然后由放射科医生进行修改。然而,有监督学习需要大量的人工标注,这些标注数据很难获得,特别是在医学图像领域。自监督学习能够利用无标签数据,为模型提供良好的初始化参数,然后在带标签数据量有限的下游任务上进行微调。考虑到大多数自监督学习特别是对比学习主要应用于自然图像领域,并且在预训练过程中需要昂贵的GPU资源,我们提出了一种新颖而简单的基于辅助任务的自监督学习方法,该方法利用了三维医学图像中的位置信息。具体来说,我们将二维切片在三维坐标系中的纵坐标作为伪标签,在预训练阶段以模型预测该标签作为辅助任务。我们在四个语义分割数据集上证明了本文的方法在医学图像分割任务中优于其他自监督学习方法。代码已在https://github.com/alienzyj/PPos 公开。
中图分类号:
赵寅杰1,侯润萍1,曾琬琴2,秦玉磊1,沈天乐2,徐志勇2,傅小龙2,沈红斌1. 在三维医学图像分割中位置信息可以作为强监督信息[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 121-129.
ZHAO Yinjie1 (赵寅杰), HOU Runpingg1 (侯润萍), ZENG Wanqin2 (曾琬琴), QIN Yulei1 (秦玉磊), SHEN Tianle2 (沈天乐), XU Zhiyong2 (徐志勇), FU Xiaolong2* (傅小龙), SHEN Hongbin1* (沈红斌). Positional Information is a Strong Supervision for Volumetric Medical Image Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 121-129.
[1] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: A review [J]. Artificial Intelligence Review, 2021, 54(1): 137-178. [2] ZHANG S, XU J C, CHEN Y C, et al. Revisiting 3D context modeling with supervised pre-training for universal lesion detection in CT slices [M]//Medical image computing and computer assisted intervention—MICCAI 2020. Cham: Springer, 2020: 542-551. [3] JING L L, TIAN Y L. Self-supervised visual feature learning with deep neural networks: A survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. [4] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]//37th International Conference on Machine Learning. Vienna: IMLS, 2020: 1597-1607. [5] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735. [6] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap ′your own latent: A new approach to self-supervised learning [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 21271-21284. [7] WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3733-3742. [8] CHAITANYA K, ERDIL E, KARANI N, et al. Contrastive learning of global and local features for medical image segmentation with limited annotations [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 12546-12558. [9] ZENG D W, WU Y W, HU X R, et al. Positional contrastive learning for volumetric medical image segmentation [M]//Medical image computing and computer assisted intervention— MICCAI 2021. Cham:Springer, 2021: 221-230. [10] RONNEBERGER O, FISCHER P, BROX T. UNet: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computer-assisted intervention— MICCAI 2015. Cham: Springer, 2015: 234-241. [11] MILLETARI F, NAVAB N, AHMADI S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision. Stanford: IEEE,2016: 565-571. [12] C? IC?EK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation [M]//Medical image computing and computer-assisted intervention— MICCAI 2016. Cham: Springer, 2016: 424-432. [13] LOU A, GUAN S, LOEW M. DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation [C]//Medical Imaging 2021: Image Processing. Online: SPIE, 2021, 11596: 758-768. [14] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: Redesigning skip connections to exploit multiscale features in image segmentation [J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. [15] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnUNet: A self-configuring method for deep learning-based biomedical image segmentation [J]. Nature Methods, 2021, 18(2): 203-211. [16] NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 69-84. [17] DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1422-1430. [18] ZHANG R, ISOLA P, EFROS A A. Colorful image colorization [M]//Computer vision — ECCV 2016. Cham: Springer International Publishing, 2016: 649-666. [19] PATHAK D, KRAHENB ¨ UHL P, DONAHUE J, et ¨ al. Context encoders: Feature learning by inpainting [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536-2544. [20] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning [C]// 34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 18661-18673. [21] CHEN X L, HE K M. Exploring simple Siamese representation learning [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745-15753. [22] ZHOU Z W, SODHA V, RAHMAN SIDDIQUEE M M, et al. Models genesis: generic autodidactic models for 3D medical image analysis [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 384-393. [23] ZHOU Z W, SODHA V, PANG J X, et al. Models genesis [J]. Medical Image Analysis, 2021, 67: 101840. [24] ZHUANG X R, LI Y X, HU Y F, et al. Self-supervised feature learning for 3D medical images by playing a rubik’s cube [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 420-428. [25] ZHU J W, LI Y X, HU Y F, et al. Rubik’s Cube+: A self-supervised feature learning framework for 3D medical image analysis [J]. Medical Image Analysis, 2020, 64: 101746. [26] HAGHIGHI F, TAHER M R H, ZHOU Z W, et al. Transferable visual words: Exploiting the semantics of anatomical patterns for self-supervised learning [J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2857-2868. [27] YAN K, LU L, SUMMERS R M. Unsupervised body part regression via spatially self-ordering convolutional neural networks [C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1022-1025. |
[1] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[2] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[3] | BALASUBRAMANIAN S1, NARUK Mahaveer Singh2, TEWARI Gaurav3. 基于经验小波变换优化自适应混合滤波器的心电信号去噪[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80. |
[4] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[5] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[6] | 丁黎辉1,2,付立军1,3,杨光4,5,6,万林4,5,常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[7] | 孔会扬1,王殊轶1,张璨2,陈赞2,3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[8] | 周苏, 钟泽滨. 基于车载智能手机的实时车辆及行人测距[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[9] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[10] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[11] | 陈旖旎,蒋祖华. 船舶舾装件立体仓储考虑车辆冲突的多AGV任务调度策略研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 492-508. |
[12] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[13] | 吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[14] | 宋立博a,费燕琼b. 新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[15] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 348
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||