J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 91-106.doi: 10.1007/s12204-024-2705-4
徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3
接受日期:
2023-08-16
出版日期:
2025-01-28
发布日期:
2025-01-28
XU Wangwang1,2 (徐旺旺), XU Liangfeng1,2 (许良凤), LIU Ninghui3(刘宁徽), LU Na3(律娜)
Accepted:
2023-08-16
Online:
2025-01-28
Published:
2025-01-28
摘要: 乳腺癌是在女性中致病严重并且发病率较高的疾病,是全国女性癌症死亡的主要原因。然而,提前进行检查和诊断可以减少癌症的风险。现在,对于乳腺癌的诊断方法有临床检查、影像学筛查和活组织检查,其中组织病理学检查是金标准。但整个过程比较复杂和耗时,可能还会存在误诊情况。本文提出利用深度学习多分类框架,引入多注意机制和选择核卷积替换普通卷积,同时对不同注意力分配权重和组合,在模型的精度指标和速率上有提升。此外,本文还实现对学习速率调度器作出对比,使用误差函数能够在微调学习速率实现良好的性能,在标签中通过使用标签软化来减少模型错误识别所造成的损失误差,在损失函数中赋予不同的类别权重来平衡正负样本不平衡问题。我们采用BreakHis数据集自动分类乳腺癌组织学图像为良性和恶性、四分类以及八个亚型。实验结果表明,二分类准确率为98.23%~99.50%,多分类准确率在97.89%与98.11%之间。
中图分类号:
徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106.
XU Wangwang1,2 (徐旺旺), XU Liangfeng1,2 (许良凤), LIU Ninghui3(刘宁徽), LU Na3(律娜). Histological Image Diagnosis of Breast Cancer Based on Multi-Attention Convolution Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106.
[1] Global Burden of Disease Cancer Collaboration, FITZMAURICE C, AKINYEMIJU T F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990. to 2016: A systematic analysis for the global burden of disease study [J]. JAMA Oncology, 2018, 4(11): 1553-1568. [2] ZHANG Y J, WEI L C, LI J, et al. Status quo and development trend of breast biopsy technology [J]. Gland Surgery, 2013, 2(1): 15-24. [3] HADJIISKI L, SAHINER B, CHAN H P. Advances in computer-aided diagnosis for breast cancer [J]. Current Opinion in Obstetrics & Gynecology, 2006, 18(1): 64-70. [4] KAUSHAL C, BHAT S, KOUNDAL D, et al. Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images [J]. IRBM, 2019, 40(4): 211-227. [5] SHEN D G, WU G R, SUK H I. Deep learning in medical image analysis [J]. Annual Review of Biomedical Engineering, 2017, 19: 221-248. [6] WANG P, HU X L, LI Y M, et al. Automatic cell nuclei segmentation and classification of breast cancer histopathology images [J]. Signal Processing, 2016, 122(1): 1-13. [7] XIE J Y, LUTTRELL J IV, ZHANG C Y, et al. Deep learning based analysis of histopathological images of breast cancer [J]. Frontiers in Genetics, 2019, 10: 80. [8] OSAREH A, SHADGAR B. Machine learning techniques to diagnose breast cancer [C]//2010 5th International Symposium on Health Informatics and Bioinformatics. Ankara: IEEE, 2010: 114-120. [9] CHEN H L, YANG B, LIU J, et al. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis [J]. Expert Systems With Applications, 2011, 38(7): 9014-9022. [10] GUPTA M, GUPTA B. An ensemble model for breast cancer prediction using sequential least squares programming method (SLSQP) [C]//2018 Eleventh International Conference on Contemporary Computing. Noida: IEEE, 2018: 1-3. [11] KASHIF M, MALIK K R, JABBAR S, et al. Application of machine learning and image processing for detection of breast cancer [M]//Innovation in health informatics. Amsterdam: Elsevier, 2020: 145-162. [12] SPANHOL F A, OLIVEIRA L S, CAVALIN P R, et al. Deep features for breast cancer histopathological image classification [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff: IEEE, 2017: 1868-1873. [13] DAS K, CONJETI S, ROY A G, et al. Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification [C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 578-581. [14] GUO Y, DONG H H, SONG F Z, et al. Breast cancer histology image classification based on deep neural networks [C]. International conference image analysis and recognition. P′ovoa de Varzim: Springer, 2018: 827-836. [15] AKBAR S, PEIKARI M, SALAMA S, et al. The transition module: A method for preventing overfitting in convolutional neural networks [J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2019, 7(3): 260-265. [16] WEI B Z, HAN Z Y, HE X Y, et al. Deep learning model based breast cancer histopathological image classification [C]//2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis. Chengdu: IEEE, 2017: 348-353. [17] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [M]// Computer vision – ECCV 2016. Amsterdam: Springer, 2016: 630-645. [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [19] HU J, SHEN L, ALBANIE S, et al. Squeeze-andexcitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [20] LI X, WANG W H, HU X L, et al. Selective kernel networks [C]/ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519. [21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]//3rd International Conference on Learning Representations. San Diego: Computational and Biological Learning Society, 2015: 1-14. [23] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9. [24] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6450-6458. [25] XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention [C]//International Conference on Machine Learning. Lille: PMLR, 2015: 2048-2057. [26] LUCA M, BARLACCHI G, LEPRI B, et al. A survey on deep learning for human mobility [J]. ACM Computing Surveys, 2021, 55(1): 1-44. [27] LUONG T, PHAM H, MANNING C D. Effective approaches to attention based neural machine translation [C]//2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015: 1412-1421. [28] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [29] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. [30] SIFRE L, MALLAT S. Rigid-motion scattering for texture classification [DB/OL]. (2014-05-07) [2023-05-25]. https:// arxiv.org/abs/1403.1687 [31] M¨uller R, Kornblith S, Hinton G E. When does label smoothing help? [C]//33rd Conference on Neural Information. Vancouver: Curran Associates, 2019: 1-13. [32] JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module [J]. PLoS One, 2019, 14(3): e0214587. [33] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007. [34] BARDOU D, ZHANG K, AHMAD S M. Classification of breast cancer based on histology images using convolutional neural networks [J]. IEEE Access, 2018, 6: 24680-24693. [35] JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module [J]. PLoS One, 2019, 14(3): e0214587. [36] SHEIKH T S, LEE Y, CHO M. Histopathological classification of breast cancer images using a multi-scale input and multi-feature network [J]. Cancers, 2020, 12(8): 2031. [37] BOUMARAF S, LIU X B, ZHENG Z S, et al. A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images [J]. Biomedical Signal Processing and Control, 2021, 63: 102192. [38] HAN Z Y, WEI B Z, ZHENG Y J, et al. Breast cancer multi-classification from histopathological images with structured deep learning model [J]. Scientific Reports, 2017, 7: 4172. [39] RULANINGTYAS R, HYPERASTUTY A S, RAHAJU A S. Histopathology grading identification of breast cancer based on texture classification using GLCM and neural network method [J]. Journal of Physics: Conference Series, 2018, 1120: 012050. [40] DIMITROPOULOS K, BARMPOUTIS P, ZIOGA C, et al. Grading of invasive breast carcinoma through grassmannian VLAD encoding [J]. PLoS One, 2017, 12(9): e0185110. [41] NAHID A A, ALI MEHRABI M, KONG Y N. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering [J]. BioMed Research International, 2018, 2018: 2362108. [42] LAO Q, FEVENS T. Case-based histopathological malignancy diagnosis using convolutional neural networks [DB/OL]. (2019-05-28) [2023-05-25]. http://arxiv.org/abs/1905.11567 [43] HAMEED Z, ZAHIA S, GARCIA-ZAPIRAIN B, et al. Breast cancer histopathology image classification using an ensemble of deep learning models [J]. Sensors, 2020,20(16): 4373. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于变换学习和结构化低秩模型的并行成像快速重构算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | . 基于外积有效和字典学习的改进灵敏度编码重建算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | . 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[9] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[10] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[11] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[12] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[13] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[14] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[15] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||